首页> 外文学位 >Computational fluid dynamics modeling of reacting flowfields in rocket engines.
【24h】

Computational fluid dynamics modeling of reacting flowfields in rocket engines.

机译:火箭发动机反应流场的计算流体动力学建模。

获取原文
获取原文并翻译 | 示例

摘要

The objectives of the present research are to improve design capabilities for low thrust rocket engines through understanding of the detailed mixing and combustion processes. A Computational Fluid Dynamic (CFD) technique is employed to model the flowfields within the combustor, nozzle and near-plume field. Detailed modeling of rocket engine flowfields requires the application of the complete Navier-Stokes equations coupled with species diffusion equations. Of particular interest is a small gaseous hydrogen-oxygen thruster which is considered as a coordinated part of an on-going experimental program at NASA LeRC. The numerical procedure is performed on both time-marching and time-accurate algorithms, using LU approximate factorization in time, and flux split upwinding differencing in space. The unsteady version of the numerical code is validated against the linear stability theory for a shear layer involving velocity differences, molecular weight differences and chemical heat release as well as experimental shear layer data. The steady version is validated by comparing with the physical measurements in the rocket engine. The emphasis in the research is focused on using numerical analysis to predict global rocket engine performance as well as detailed local flowfield characteristics. These include three-dimensional fuel jet injection, mixing, and combustion the shear layer dynamics between the fuel cooling film and the core gas the integrity and effectiveness of the coolant film and their impacts on engine performance. Comparisons with experimental data for both global engine performance and detailed local flowfields are discussed. The computational analyses can be used in a complementary fashion with the experimental program to refine and enhance the engine performance prediction capabilities.
机译:本研究的目的是通过了解详细的混合和燃烧过程来提高低推力火箭发动机的设计能力。计算流体动力学(CFD)技术用于对燃烧室,喷嘴和近浆场内的流场进行建模。火箭发动机流场的详细建模需要应用完整的Navier-Stokes方程和物种扩散方程。特别令人感兴趣的是小型气态氢氧推进器,它被认为是NASA LeRC正在进行的实验计划的协调部分。数值程序是在时间行进算法和时间精确算法上执行的,使用时间LU近似分解和空间上的磁通分裂迎风差异。相对于剪切速率的线性稳定性理论,对非恒定版本的数值进行了验证,该剪切层涉及速度差,分子量差和化学放热以及实验剪切层数据。通过与火箭发动机中的物理测量结果进行比较,可以验证稳态版本。该研究的重点是使用数值分析来预测全球火箭发动机的性能以及详细的局部流场特性。这些包括三维燃料喷射喷射,混合和燃烧,在燃料冷却膜和核心气体之间的剪切层动力学,冷却剂膜的完整性和有效性以及它们对发动机性能的影响。讨论了与用于整体发动机性能和详细局部流场的实验数据的比较。计算分析可以与实验程序互补地使用,以完善和增强发动机性能预测能力。

著录项

  • 作者

    Tsuei, Hsin-Hua.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Aerospace.Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 1995
  • 页码 202 p.
  • 总页数 202
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号