首页> 美国卫生研究院文献>AAPS PharmSciTech >Computational fluid dynamics modeling of the paddle dissolution apparatus: Agitation rate mixing patterns and fluid velocities
【2h】

Computational fluid dynamics modeling of the paddle dissolution apparatus: Agitation rate mixing patterns and fluid velocities

机译:桨叶溶解装置的计算流体动力学模型:搅拌速率混合模式和流体速度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The purpose of this research was to further investigate the hydrodynamics of the United States Pharmacopeia (USP) paddle dissolution apparatus using a previously generated computational fluid dynamics (CFD) model. The influence of paddle rotational speed on the hydrodynamics in the dissolution vessel was simulated. The maximum velocity magnitude for axial and tangential velocities at different locations in the vessel was found to increase linearly with the paddle rotational speed. Path-lines of fluid mixing, which were examined from a central region at the base of the vessel, did not reveal a region of poor mixing between the upper cylin-drical and lower hemispherical volumes, as previously speculated. Considerable differences in the resulting flow patterns were observed for paddle rotational speeds between 25 and 150 rpm. The approximate time required to achieve complete mixing varied between 2 to 5 seconds at 150 rpm and 40 to 60 seconds at 25 rpm, although complete mixing was achievable for each speed examined. An analysis of CFD-generated velocities above the top surface of a cylindrical compact positioned at the base of the vessel, below the center of the rotating paddle, revealed that the fluid in this region was undergoing solid body rotation. An examination of the velocity boundary layers adjacent to the curved surface of the compact revealed large peaks in the shear rates for a region within∼3 mm from the base of the compact, consistent with a ‘grooving’ effect, which had been previously seen on the surface of compacts following dissolution, associated with a higher dissolution rate in this region.
机译:本研究的目的是使用先前生成的计算流体动力学(CFD)模型进一步研究美国药典(USP)桨叶溶解装置的流体动力学。模拟了桨转速对溶出杯中流体动力学的影响。发现在容器中不同位置的轴向和切向速度的最大速度大小随桨的旋转速度线性增加。如先前所推测的,从容器底部的中心区域检查的流体混合路径没有显示出上圆柱体和下半球体之间混合不良的区域。对于25至150 rpm之间的桨叶转速,观察到所得流型存在明显差异。完成完全混合所需的大致时间在150 rpm的2至5秒和25 rpm的40至60秒之间变化,尽管对于每种检查的速度都可以实现完全混合。对位于容器底部,旋转桨叶中心下方的圆柱形压块顶面上方的CFD生成的速度进行分析后发现,该区域中的流体正在经历固体旋转。对与压实体曲面相邻的速度边界层的检查显示,在距压实体底部约3 mm的区域内,剪切速率出现了一个大的峰值,这与先前在表面上看到的“开槽”效应一致。溶解后的压坯表面,与该区域较高的溶解速率相关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号