首页> 外文学位 >Rapid thermal chemical vapor deposited sidewall spacer dielectrics for deep submicron MOSFET technology.
【24h】

Rapid thermal chemical vapor deposited sidewall spacer dielectrics for deep submicron MOSFET technology.

机译:用于深亚微米MOSFET技术的快速热化学气相沉积侧壁间隔电介质。

获取原文
获取原文并翻译 | 示例

摘要

A low pressure rapid thermal chemical vapor deposition (RTCVD) process has been investigated as an alternative to conventional furnace low pressure chemical vapor deposition (LPCVD) process for formation of sidewall spacer dielectric to be used in advanced metal-oxide-semiconductor-field-effect-transistor (MOSFET) technology. RTCVD oxide, oxynitride and nitride films were formed using silane (SiH;Refractive index and wet etch rate measurements suggest that the as-deposited RTCVD oxides are better in material quality than conventional furnace LPCVD sidewall spacer oxides and with a short 900;Process and device simulators were used extensively to study and design advanced lightly doped drain (LDD) structures with different RTCVD spacer dielectrics and evaluate their effect on improving the device performance and reliability. PISCES-IIB simulations demonstrated that by adjusting the LDD doping concentration in the device we could shift the location of the peak lateral electric field in the device near the gate edge or slightly under the sidewall spacer resulting in less hot carrier injection into the gate dielectric and more into the sidewall spacer, thus allowing us to qualitatively separate hot carrier degradation induced by the gate dielectric and the sidewall spacer. LDD arsenic junction profiles were simulated and compared to arsenic SIMS profiles to calibrate the process simulators and carefully match the LDD junction profiles used in the PISCES-IIB simulations.;I
机译:已经研究了低压快速热化学气相沉积(RTCVD)工艺,以替代用于形成用于高级金属氧化物半导体场效应的侧壁间隔电介质的常规炉低压化学气相沉积(LPCVD)工艺。 -晶体管(MOSFET)技术。 RTCVD氧化物,氮氧化物和氮化物膜是使用硅烷(SiH)形成的;折射率和湿蚀刻速率的测量表明,所沉积的RTCVD氧化物的材料质量优于常规熔炉LPCVD侧壁间隔氧化物,并且具有900短的制造工艺和设备PISCES-IIB仿真表明,通过调整器件中的LDD掺杂浓度,我们可以广泛地使用仿真器来研究和设计具有不同RTCVD间隔电介质的先进轻掺杂漏极(LDD)结构,并评估其对改善器件性能和可靠性的影响。将器件中的峰值横向电场的位置移至靠近栅极边缘或略微位于侧壁隔离物下方的位置,从而导致较少的热载流子注入到栅极电介质中,而更多地注入侧壁隔离物,从而使我们能够定性地分离由栅极介电层和侧壁隔离层。确定并与砷SIMS轮廓进行比较,以校准过程仿真器并仔细匹配PISCES-IIB仿真中使用的LDD结轮廓。

著录项

  • 作者

    Miles, Donald Slyvester.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Electrical engineering.;Materials science.
  • 学位 Ph.D.
  • 年度 1996
  • 页码 204 p.
  • 总页数 204
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号