首页> 外文学位 >The specific heat of C(70) fullerene, nanotubes, photo-polymerized C(60) fullerene, potassium doped fullerenes, and rubidium doped fullerenes.
【24h】

The specific heat of C(70) fullerene, nanotubes, photo-polymerized C(60) fullerene, potassium doped fullerenes, and rubidium doped fullerenes.

机译:C(70)富勒烯,纳米管,光聚合的C(60)富勒烯,钾掺杂的富勒烯和rub掺杂的富勒烯的比热。

获取原文
获取原文并翻译 | 示例

摘要

{dollar}rm Csb{lcub}70{rcub}{dollar} fullerene is the second most abundant fullerene after {dollar}rm Csb{lcub}60{rcub}{dollar}. To understand the low temperature vibrational modes of {dollar}rm Csb{lcub}70{rcub}{dollar}, we measured the specific heat of a polycrystalline {dollar}rm Csb{lcub}70{rcub}{dollar} sample from 0.3 to 78 K. Solid {dollar}rm Csb{lcub}70{rcub}{dollar} fullerene exhibits many structural phases at different temperatures, and below 276 K it crystallizes in a monoclinic structure with a basis of 4 molecules per primitive cell. The polycrystalline sample has spectroscopic purity of 99.5+%. The measurement was extended down to 0.3 K by use of a {dollar}sp3{dollar}He cryostat especially made for low temperature measurements. Analysis of the specific heat data shows that {dollar}rm Csb{lcub}70{rcub}{dollar} is a non-metallic material with a relatively low Debye temperature. However, the data can only be fitted by use of a model that contain various contributions to the specific heat in addition to the Debye contribution. These contributions include Einstein terms that account for two contributions made by librational and rotational frequencies in this system. It is most important to note that in {dollar}rm Csb{lcub}70{rcub}{dollar} the specific heat peaks past the Dulong-Petit limit of 6R (Equipartition Theorem) at the low temperature of 30 K. We show that this excess specific heat can not be accounted for by the intramolecular modes, as previously thought. We attribute this excess to "orientational defects" that originate in {dollar}rm Csb{lcub}70{rcub}{dollar} due to its oblate structure. No such excess specific heat is observed in C{dollar}sb{lcub}60{rcub}{dollar}.; We have measured the specific heat of fullerene nanotubes from 0.6 to 210 K. The specific heat curve is similar to graphite, and shows characteristics of a two-dimensional structure throughout the whole temperature range. The data also show the absence of any metallic behaviour, as was thought to exist in a certain percentage of the tubes. We found that the characteristic Debye temperature for the nanotubes is 1400 K, which is intermediate in temperature between the values of 950 and 2500 K found for the characteristic temperature in graphite.; We photo-polymerized C{dollar}sb{lcub}60{rcub}{dollar}, (C{dollar}sb{lcub}60{rcub})sb{lcub}n{rcub}{dollar}, from its powder form. Evidence for photopolymerization is shown in the additional specific heat in comparison with pristine C{dollar}sb{lcub}60{rcub}{dollar}. We also measured the specific heat of alkali-doped C{dollar}sb{lcub}60{rcub}{dollar} from 3 K to 210 K. The specific heat of (C{dollar}sb{lcub}60{rcub})sb{lcub}n{rcub},{dollar} matches that of KC{dollar}sb{lcub}60{rcub}{dollar}, a well known polymer. The AC{dollar}sb{lcub}60{rcub}{dollar} compounds are isostructural at high temperature. When they polymerize they exhibit varied behaviours, from their n value (degree of polymerization) to their electronic properties. The linear temperature coefficients for the AC{dollar}sb{lcub}60{rcub}{dollar} are high, indicating a one-dimensional behaviour in RbC{dollar}sb{lcub}60{rcub}{dollar}, and metallicity and disorder in KC{dollar}sb{lcub}60{rcub}{dollar}.
机译:{dollar} rm Csb {lcub} 70 {rcub} {dollar}富勒烯是仅次于{dollar} rm Csb {lcub} 60 {rcub} {dollar}的富勒烯第二高的富勒烯。为了了解{rm} rm Csb {lcub} 70 {rcub} {dollar}的低温振动模式,我们从0.3开始测量了多晶{rm} Csb {lcub} 70 {rcub} {dollar}样品的比热固态富勒烯在不同温度下表现出许多结构相,在276 K以下结晶成单斜晶结构,每个原始细胞有4个分子。多晶样品的光谱纯度为99.5 +%。通过使用{dol} sp3 {dollar} He低温恒温器将测量范围扩展至0.3 K,该低温恒温器是专门为低温测量而制造的。对比热数据的分析表明,{rm} Csb {lcub} 70 {rcub} {dollar}是一种具有较低德拜温度的非金属材料。但是,只能使用模型来拟合数据,该模型除了包含Debye贡献外,还包含比热的各种贡献。这些贡献包括爱因斯坦术语,它们解释了该系统中的自由频率和旋转频率做出的两个贡献。最重要的是要注意到,在{dollar} rm Csb {lcub} 70 {rcub} {dollar}中,在30 K的低温下,比热峰超过了6R(等分定理)的Dulong-Petit极限。如先前所认为的,分子内模式不能解释这种过量的比热。我们将多余的部分归因于{dollar} rm Csb {lcub} 70 {rcub} {dollar}由于其扁平的结构而产生的“原始缺陷”。在C {dollar} sb {lcub} 60 {rcub} {dollar}中未观察到这样的过量比热。我们已经测量了富勒烯纳米管在0.6到210 K之间的比热。比热曲线类似于石墨,并显示了在整个温度范围内的二维结构特征。数据还表明没有任何金属行为,据认为存在一定比例的试管中。我们发现纳米管的特征德拜温度为1400 K,该温度介于石墨特征温度的950和2500 K之间。我们从粉末形式将C {dollar} sb {lcub} 60 {rcub} {dollar},(C {dollar} sb {lcub} 60 {rcub})sb {lcub} n {rcub} {dollar}光聚合成粉末形式。与原始的C {dollar} sb {lcub} 60 {rcub} {dollar}相比,光聚合的证据显示在额外的比热中。我们还测量了碱掺杂的C {dollar} sb {lcub} 60 {rcub} {dollar}从3 K到210 K的比热。(C {dollar} sb {lcub} 60 {rcub})的比热sb {lcub} n {rcub},{dollar}与著名的聚合物KC {dollar} sb {lcub} 60 {rcub} {dollar}相匹配。 AC {dollar} sb {lcub} 60 {rcub} {dollar}化合物在高温下是同构的。当它们聚合时,它们表现出从其n值(聚合度)到其电子性能的各种行为。 AC {dollar} sb {lcub} 60 {rcub} {dollar}的线性温度系数很高,表明RbC {dollar} sb {lcub} 60 {rcub} {dollar}的一维行为以及金属性和KC {dollar} sb {lcub} 60 {rcub} {dollar}中的疾病。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号