首页> 外文学位 >Structural, chemical, and electrical characterization of III-V materials grown by low temperature molecular beam epitaxy.
【24h】

Structural, chemical, and electrical characterization of III-V materials grown by low temperature molecular beam epitaxy.

机译:通过低温分子束外延生长的III-V材料的结构,化学和电学表征。

获取原文
获取原文并翻译 | 示例

摘要

The successful application of Gallium Arsenide (GaAs) grown at low molecular beam epitaxy (MBE) temperatures in electro-optical devices has promoted research to unravel the relationships between the structure and the electrical properties of similar III-V materials. The advantage of growth at low temperatures is the incorporation of excess group V element in the lattice. Low temperature (LT) GaAs usually has 1-2% excess As in the lattice. These point defects are expected to form deep level states in the band gap thus dominating the conductivity by carrier trapping. Annealing of LT GaAs at typical MBE growth temperatures (450-600{dollar}spcirc{dollar}C) for about 10 minutes has been shown to produce phosphorus precipitation that acts as buried Schottky barriers possessing "spherical" depletion or "space-charge" regions. It is believed that when these depletion regions overlap, the layer becomes highly resistive and semi-insulating. Carrier lifetimes in such LT material are very short (in the sub-picosecond range) and electronic transport is mainly by variable range hopping conduction. The high resistivity and the short carrier lifetimes have initiated the use of LT GaAs in field effect transistor (FET) buffer layers and ultra-fast optical switches.; This research focuses on analyzing the nanostructure, chemistry and morphology of LT Indium Phosphide (InP) synthesized under a variety of growth conditions with the intent of obtaining a correlation with relevant electrical properties. Work along the lines of the equivalent LT GaAs system has been carried out and a comparison has been drawn between As-based and P-based systems. Transmission electron microscopy (TEM) and allied techniques of imaging, spectroscopy and microdiffraction have been employed to characterize hyperstoichiometric InP grown by low temperature MBE, using solid indium and P{dollar}sb2{dollar} (from phosphine) for elemental sources. Observations of structural defects, elemental phosphorus and indium precipitates, and related lattice parameter variations in the LT layers have been made. Lattice strain in the epitaxial layers and corresponding variations in the stoichiometry have been investigated. The trends in the microstructural properties and chemistry of the as-grown material as a result of annealing have been analyzed and correlated with variations in electro-optical properties like conductivity and photoluminescence. Structural and electrical characterization has been performed on LT GaAs layers in order to elucidate the relationship between the trends in the nanostructural characteristics and those in the electrical behavior of the material upon annealing. Comparisons with As-based systems, particularly LT GaAs, have been established with similarities as well as some key differences in the properties. While a correlation between a moderate enhancement of the resistivity and crystalline phosphorus precipitation in the annealed material was observed, highly resistive layers were not formed. The absence of high resistivity material in the case of LT InP could be explained by the presence of indium or phosphorus antisite defects.
机译:在低分子束外延(MBE)温度下生长的砷化镓(GaAs)在电光设备中的成功应用促进了揭开类似III-V材料的结构与电性能之间关系的研究。在低温下生长的优点是在晶格中引入了过量的V族元素。低温(LT)GaAs通常在晶格中有1-2%的过量As。这些点缺陷有望在带隙中形成深能级状态,从而通过载流子俘获控制电导率。 LT GaAs在典型的MBE生长温度(450-600 spspcirc {dollar} C)上退火约10分钟已显示会产生磷沉淀,该磷沉淀充当具有“球形”耗尽或“空间电荷”的掩埋肖特基势垒地区。据信,当这些耗尽区重叠时,该层变为高电阻和半绝缘的。这种LT材料的载流子寿命非常短(在亚皮秒范围内),并且电子传输主要是通过变程跳变传导实现的。高电阻率和短载流子寿命已开始在场效应晶体管(FET)缓冲层和超快光开关中使用LT GaAs。这项研究致力于分析在各种生长条件下合成的LT磷化铟(InP)的纳米结构,化学和形态,目的是获得与相关电性能的相关性。已经进行了等效的LT GaAs系统路线的工作,并对基于As的系统和基于P的系统进行了比较。透射电子显微镜(TEM)和相关的成像,光谱学和微衍射技术已用于表征低温MBE所生长的超化学计量InP,其中使用固态铟和P {dollar} sb2 {dollar}(来自膦)作为元素来源。已经观察到结构缺陷,元素磷和铟沉淀以及LT层中相关的晶格参数变化。已经研究了外延层中的晶格应变和化学计量的相应变化。由于退火的结果,已生长材料的微观结构特性和化学趋势已得到分析,并与电光特性(如电导率和光致发光)的变化相关。为了阐明纳米结构特征的趋势与退火后材料的电学行为之间的关系,已经在LT GaAs层上进行了结构和电学表征。已经建立了与基于砷的系统(尤其是LT GaAs)的比较,这些比较具有相似之处,并且在性能方面存在一些关键差异。尽管观察到在退火材料中电阻率适度提高与结晶磷沉淀之间的相关性,但未形成高电阻层。在LT InP情况下,不存在高电阻率的材料可以通过存在铟或磷的反位缺陷来解释。

著录项

  • 作者

    Rajesh, Ramamurti.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Engineering Electronics and Electrical.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 1996
  • 页码 109 p.
  • 总页数 109
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号