首页> 外文学位 >An intelligent computer vision control and target tracking system design of an agricultural grapevine pruning robot.
【24h】

An intelligent computer vision control and target tracking system design of an agricultural grapevine pruning robot.

机译:农用葡萄修剪机器人的智能计算机视觉控制和目标跟踪系统设计。

获取原文
获取原文并翻译 | 示例

摘要

The performance of a grapevine pruning robot module was improved by adding a target tracking system which contains an altitude estimation process and compensation law. The grapevine pruning robot module's performance was measured under simulated field conditions.; The design and construction of a motion simulator, the design of an electrohydraulic servo system to power the simulator, and the design of a digital fuzzy logic controller to control the simulator are presented. The purpose of the simulator is to duplicate the response of a carrier supporting a grapevine pruning robot module traveling along uneven vineyard terrain. The grapevine pruning robot is automatically positioned by finding the location of the vine's cordon (Gunkel and Throop, 1992).; The simulator offers four degrees-of-freedom, two rotational and two translational. The two rotational motions allow simulation of pitch and yaw of the carrier while the two translation motions simulate the movement of the carrier vertically up and down. The fuzzy logic controller allows computer control of the simulator's motion. This enables actual field data measurements of vineyard terrain roughness and slope to be programmed and duplicated by the simulator.; Node counting is an important step needed for the determination of pruning severity. Therefore a mathematical morphological detection algorithm was designed to determine the location and number of nodes. The advantage and disadvantage of using mathematical morphology will also be discussed. The main purpose of the approach is to enable the current block-pruning type robotic grapevine pruner to selectively-prune.; A pattern recognition algorithm is developed to update the block-pruning type grapevine pruner to selective-pruning type grapevine pruner. Two mathematical grayscale morphological operations were successfully implemented, open and close, to achieve the goal. All the images were preprocessed to be smoothed out. Two disk elements with radius 4 and radius 3 were used for the node finding and eight line structure elements with 0{dollar}spcirc{dollar}, 27{dollar}spcirc{dollar}, 45{dollar}spcirc{dollar}, 63{dollar}spcirc{dollar}, 90{dollar}spcirc{dollar}, 117{dollar}spcirc{dollar}, 135{dollar}spcirc{dollar} and 153{dollar}spcirc{dollar} were used for branch extraction. The rectangular structure element with width 20 and length 30 was used for post extraction. The pixel value of all the structure elements were uniformly set as 3.
机译:通过添加包含高度估计过程和补偿定律的目标跟踪系统,提高了葡萄修剪机器人模块的性能。在模拟的野外条件下测量了葡萄修剪机器人模块的性能。介绍了运动模拟器的设计和构造,为模拟器供电的电动液压伺服系统的设计以及控制模拟器的数字模糊逻辑控制器的设计。该模拟器的目的是复制载体的响应,该载体支持沿着不平坦的葡萄园地形行驶的葡萄修剪机器人模块。葡萄修剪机器人通过找到葡萄的警戒线的位置自动定位(Gunkel和Throop,1992)。该模拟器提供四个自由度,两个旋转度和两个平移度。这两个旋转运动允许模拟托架的俯仰和偏航,而两个平移运动则模拟托架垂直向上和向下的运动。模糊逻辑控制器允许计算机控制模拟器的运动。这使得模拟器可以编程和复制葡萄园地形粗糙度和坡度的实际现场数据。节点计数是确定修剪严重性所需的重要步骤。因此,设计了一种数学形态学检测算法来确定节点的位置和数量。也将讨论使用数学形态学的优缺点。该方法的主要目的是使当前的块修剪型自动葡萄修剪器能够选择性修剪。开发了一种模式识别算法,将块修剪型葡萄修剪器更新为选择性修剪型葡萄修剪器。成功实现了两个数学灰度形态学操作(打开和关闭),以实现该目标。对所有图像进行预处理以使其平滑。使用两个半径为4和半径为3的圆盘元素进行节点查找,并使用八个线结构元素分别为0 {dollar} spcirc {dollar},27 {dollar} spcirc {dollar},45 {dollar} spcirc {dollar},63 {美元} spcirc {dollar},90 {dollar} spcirc {dollar},117 {dollar} spcirc {dollar},135 {dollar} spcirc {dollar}和153 {dollar} spcirc {dollar}被用于分支提取。宽度为20,长度为30的矩形结构元素用于后期提取。所有结构元素的像素值统一设置为3。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号