首页> 外文学位 >Inferring Optimally Precise and Maximally Accurate Models from Electron Microscopy Data.
【24h】

Inferring Optimally Precise and Maximally Accurate Models from Electron Microscopy Data.

机译:从电子显微镜数据推断最佳精确度和最大精确度的模型。

获取原文
获取原文并翻译 | 示例

摘要

Advances in electron microscopy (EM) allow for structure determination of large macromolecular machines at increasingly high resolutions. A key step in this process is interpreting the EM density map with structural models of maximal accuracy and optimal precision. Model precision should be determined by the uncertainty in the experimental data; however, current methods only set uncertainty in an ad hoc manner with arbitrary weight terms. Thus, there is a need for more objective methods.;In Chapter 2, I present a novel Bayesian approach to modeling macromolecular structures based on EM density maps. The key advancement is the development of a scoring function that uses the local uncertainty of the density map to set the data weight and allows for correlation between neighboring density values. Unlike traditional approaches, the score does not require an expert user to set arbitrary parameters. I assessed the accuracy of models generated by this approach with a set of experimentally-derived, previously-published EM data of macromolecular complexes at varying resolutions from 3 to 6A. I found that this approach leads to higher fluctuations in the model ensemble in locations with higher local uncertainty, and obtained accurate ensembles for a 3.2A resolution map of Trpvl and 3.4A and 5.4A resolution maps of gamma-secretase.;In Chapter 3, I present models of the gamma-tubulin small complex in two functional states based on a challenging data set consisting of low-resolution EM density maps and a remotely related structure. Here, I used a traditional scoring techniques, but extensively sampled alignments and conformations in order to ensure that the model ensemble reflected the uncertainty in the data. The resulting models form a tight cluster for each state and were consistent with a set of newly reported chemical cross-links. Comparing the two states, I found significant structural differences and predict stabilizing interactions of the two states. The work in this chapter shows the difficulties of traditional modeling and serves as motivation for the methods developed in Chapter 2.;Both approaches are incorporated into the open source Integrative Modeling Platform (IMP) package, enabling integration with multiple other data types and usage of myriad sampling and analysis tools.
机译:电子显微镜(EM)的进步允许以越来越高的分辨率确定大型高分子机器的结构。此过程的关键步骤是使用最大精度和最佳精度的结构模型解释EM密度图。模型精度应由实验数据的不确定性决定;然而,目前的方法仅以任意权重条件临时设置不确定性。因此,需要更客观的方法。在第二章中,我提出了一种新颖的贝叶斯方法,用于基于EM密度图对高分子结构进行建模。关键的进步是开发了一种评分功能,该功能使用密度图的局部不确定性来设置数据权重,并允许相邻密度值之间的相关性。与传统方法不同,该分数不需要专业用户设置任意参数。我评估了这种方法生成的模型的准确性,该模型具有一组实验得出的,先前已发布的大分子复合物的EM数据,其分辨率为3至6A。我发现这种方法会导致局部不确定性较高的位置中的模型集合出现较大波动,并针对Trpvl的3.2A分辨率图和γ-分泌酶的3.4A和5.4A分辨率图获得了准确的集合。在第3章中,我基于具有挑战性的数据集(包括低分辨率EM密度图和远程相关的结构),介绍了处于两种功能状态的γ-微管蛋白小分子复合物的模型。在这里,我使用了传统的评分技术,但是为了确保模型整体反映了数据中的不确定性,对对齐方式和构象进行了广泛采样。生成的模型为每个状态形成一个紧密的簇,并且与一组新报告的化学交联一致。比较这两种状态,我发现了明显的结构差异并预测了这两种状态的稳定相互作用。本章中的工作显示了传统建模的困难,并且是第2章中开发方法的动机。这两种方法都被集成到开源集成建模平台(IMP)包中,从而可以与多种其他数据类型集成以及使用大量的采样和分析工具。

著录项

  • 作者

    Greenberg, Charles Harold.;

  • 作者单位

    University of California, San Francisco.;

  • 授予单位 University of California, San Francisco.;
  • 学科 Biophysics.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 125 p.
  • 总页数 125
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号