首页> 外文学位 >In situ transmission electron microscopy studies of dislocation/defect interactions in silicon germanium/silicon heterostructures.
【24h】

In situ transmission electron microscopy studies of dislocation/defect interactions in silicon germanium/silicon heterostructures.

机译:硅锗/硅异质结构中位错/缺陷相互作用的原位透射电子显微镜研究。

获取原文
获取原文并翻译 | 示例

摘要

A crucial component in the successful application of strained layer heterostructures in electronic devices is a fundamental understanding of the misfit strain relaxation process. One of the central parameters governing the relaxation process is the kinetics of misfit dislocation generation during both the growth and annealing cycles. In this dissertation, in-situ transmission electron microscopy is used to determine the interaction of propagating misfit dislocations with defects in these structures. Because the specimen geometry and epilayer strain can be well characterized and controlled, it is possible to observe small changes in dislocation motion. This allows quantitative characterization of the fundamental nature of the interaction of moving dislocations with point, line and surface defects in this materials system.; Utilizing the unique capabilities of a specially constructed UHV-TEM equipped with in-situ UHV-CVD growth facilities I have directly measured the propagation velocities of misfit dislocations both during heteroepitaxial growth and during post-growth annealing. It was observed that dislocations continue to propagate at nearly the same velocity during post-growth UHV annealing as they do during growth itself. Following the formation of a thin native oxide layer, dislocation motion is dramatically enhanced. Low energy electron microscopy observations as well as arsenic adsorption experiments indicate that there is an interaction between moving dislocations and the surface reconstruction in this system which slows dislocation motion. Finite element modeling is used to show that the observed increase is most likely a result of stress effects on dislocation kink nucleation at steps along the native oxide - epilayer interface.; Observations of dislocation - dislocation interactions during both growth and annealing of SiGe heterostructures have allowed determination of the range of epilayer thickness and composition where existing interfacial dislocations can exert sufficient force on moving dislocations to halt their motion. The findings have important ramifications on the creation of low dislocation density structures.; Post-growth in-situ annealing of ion-implanted Si/SiGe/Si (001) heterostructures permits observation of the interaction of misfit dislocations with point defects. Implantation of boron directly within the SiGe epilayer results in significantly enhanced dislocation nucleation and overall strain relaxation, but dislocation motion is observed to be impeded by clusters of implantation related defects.; Throughout this dissertation, emphasis is placed on the requirements for accurate quantitative measurements of dislocation motion in this system. These quantitative measurements yield insight into both the fundamental behavior of dislocations in semiconductor materials and into the technologically important process of strain relaxation in semiconductor heterostructures. (Abstract shortened by UMI.)
机译:在电子设备中成功应用应变层异质结构的关键因素是对失配应变松弛过程的基本理解。控制松弛过程的中心参数之一是在生长和退火周期中失配位错产生的动力学。本文采用原位透射电子显微镜来确定传播失配位错与这些结构缺陷的相互作用。由于可以很好地表征和控制试样的几何形状和外延层应变,因此可以观察到位错运动的微小变化。这可以定量表征该材料系统中移动位错与点,线和表面缺陷相互作用的基本性质。利用装备有就地 UHV-CVD生长设备的特制UHV-TEM的独特功能,我直接测量了异质外延生长和生长后退火过程中错配位错的传播速度。据观察,位错在生长后的UHV退火过程中继续以与生长过程中相同的速度传播。在形成薄的天然氧化物层之后,位错运动得到显着增强。低能电子显微镜观察和砷吸附实验表明,在该系统中,移动位错与表面重建之间存在相互作用,从而减慢了位错运动。有限元建模用来显示观察到的增加很可能是应力对沿天然氧化物-外延层界面的台阶处的扭结扭结成核的影响的结果。 SiGe异质结构的生长和退火过程中位错-位错相互作用的观察结果可以确定表层厚度和组成的范围,其中现有的界面位错可以对移动的位错施加足够的力以阻止其运动。这些发现对低位错密度结构的产生有重要影响。离子注入的Si / SiGe / Si(001)异质结构的生长后<原位>原位退火可以观察错配位错与点缺陷的相互作用。直接在SiGe外延层内注入硼会导致位错成核和整体应变松弛显着增强,但观察到位错运动受到与注入有关的缺陷簇的阻碍。在整个本文中,重点放在对系统中位错运动进行精确定量测量的要求上。这些定量测量不仅可以洞察半导体材料中位错的基本行为,还可以洞悉半导体异质结构中应变松弛的技术上重要的过程。 (摘要由UMI缩短。)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号