首页> 外文学位 >Navigation, Path Planning, and Task Allocation Framework For Mobile Co-Robotic Service Applications in Indoor Building Environments
【24h】

Navigation, Path Planning, and Task Allocation Framework For Mobile Co-Robotic Service Applications in Indoor Building Environments

机译:室内建筑环境中移动协同服务应用的导航,路径规划和任务分配框架

获取原文
获取原文并翻译 | 示例

摘要

Recent advances in computing and robotics offer significant potential for improved autonomy in the operation and utilization of today's buildings. Examples of such building environment functions that could be improved through automation include: a) building performance monitoring for real-time system control and long-term asset management; and b) assisted indoor navigation for improved accessibility and wayfinding. To enable such autonomy, algorithms related to task allocation, path planning, and navigation are required as fundamental technical capabilities. Existing algorithms in these domains have primarily been developed for outdoor environments. However, key technical challenges that prevent the adoption of such algorithms to indoor environments include: a) the inability of the widely adopted outdoor positioning method (Global Positioning System - GPS) to work indoors; and b) the incompleteness of graph networks formed based on indoor environments due to physical access constraints not encountered outdoors.;The objective of this dissertation is to develop general and scalable task allocation, path planning, and navigation algorithms for indoor mobile co-robots that are immune to the aforementioned challenges. The primary contributions of this research are: a) route planning and task allocation algorithms for centrally-located mobile co-robots charged with spatiotemporal tasks in arbitrary built environments; b) path planning algorithms that take preferential and pragmatic constraints (e.g., wheelchair ramps) into consideration to determine optimal accessible paths in building environments; and c) navigation and drift correction algorithms for autonomous mobile robotic data collection in buildings.;The developed methods and the resulting computational framework have been validated through several simulated experiments and physical deployments in real building environments. Specifically, a scenario analysis is conducted to compare the performance of existing outdoor methods with the developed approach for indoor multi-robotic task allocation and route planning. A simulated case study is performed along with a pilot experiment in an indoor built environment to test the efficiency of the path planning algorithm and the performance of the assisted navigation interface developed considering people with physical disabilities (i.e., wheelchair users) as building occupants and visitors. Furthermore, a case study is performed to demonstrate the informed retrofit decision-making process with the help of data collected by an intelligent multi-sensor fused robot that is subsequently used in an EnergyPlus simulation. The results demonstrate the feasibility of the proposed methods in a range of applications involving constraints on both the environment (e.g., path obstructions) and robot capabilities (e.g., maximum travel distance on a single charge). By focusing on the technical capabilities required for safe and efficient indoor robot operation, this dissertation contributes to the fundamental science that will make mobile co-robots ubiquitous in building environments in the near future.
机译:计算和机器人技术的最新进展为改善当今建筑物的运行和利用的自治性提供了巨大的潜力。可以通过自动化改善的此类建筑环境功能的示例包括:a)监视建筑性能以进行实时系统控制和长期资产管理; b)辅助室内导航,以提高可达性和寻路能力。为了实现这种自治,需要与任务分配,路径规划和导航相关的算法作为基本技术功能。这些领域中的现有算法主要是针对室外环境开发的。但是,阻止在室内环境中采用这种算法的关键技术挑战包括:a)无法广泛采用的室外定位方法(全球定位系统-GPS)在室内工作; b)由于没有在户外遇到的物理访问限制而导致的基于室内环境的图网络的不完备性。;本论文的目的是为室内移动协同机器人开发通用且可扩展的任务分配,路径规划和导航算法。不受上述挑战的影响。这项研究的主要贡献是:a)在任意构建环境中,负责时空任务的位于中心的移动协同机器人的路线规划和任务分配算法; b)路径规划算法,该算法考虑了优先和务实的约束条件(例如轮椅坡道),以确定建筑环境中的最佳可及路径; c)用于建筑物中自主移动机器人数据收集的导航和漂移校正算法。;已通过在真实建筑物环境中进行的多次模拟实验和物理部署,验证了所开发的方法和所得的计算框架。具体而言,进行了情景分析,以比较现有室外方法与用于室内多机器人任务分配和路线规划的已开发方法的性能。在室内建筑环境中进行了模拟案例研究和试点实验,以测试路径规划算法的效率以及辅助导航界面的性能,这些辅助导航界面的开发考虑了身体残障人士(即轮椅使用者)作为建筑物的居住者和访客。此外,还进行了案例研究,以借助智能多传感器融合机器人收集的数据来演示明智的改装决策过程,该机器人随后用于EnergyPlus仿真。结果证明了所提出的方法在涉及环境(例如,路径障碍物)和机器人能力(例如,单次充电的最大行进距离)的约束的一系列应用中的可行性。通过关注安全有效的室内机器人操作所需的技术能力,本论文为基础科学做出了贡献,该基础科学将使移动协同机器人在不久的将来在建筑环境中无处不在。

著录项

  • 作者

    Mantha, Bharadwaj.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Civil engineering.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 202 p.
  • 总页数 202
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号