首页> 外文学位 >Engineering PNIPAAm Biomaterial Scaffolds to Model Microenvironmental Regulation of Glioblastoma Stem-Like Cells
【24h】

Engineering PNIPAAm Biomaterial Scaffolds to Model Microenvironmental Regulation of Glioblastoma Stem-Like Cells

机译:工程PNIPAAm生物材料支架模型化胶质母细胞瘤干细胞的微环境调控。

获取原文
获取原文并翻译 | 示例

摘要

Following diagnosis of a glioblastoma (GBM) brain tumor, surgical resection, chemotherapy and radiation together yield a median patient survival of only 15 months. Importantly, standard treatments fail to address the dynamic regulation of the brain tumor microenvironment that actively supports tumor progression and treatment resistance. Moreover, specialized niches within the tumor microenvironment maintain a population of highly malignant glioblastoma stem-like cells (GSCs). GSCs are resistant to traditional chemotherapy and radiation therapy and are likely responsible for near universal rates of tumor recurrence and associated morbidity. Thus, disrupting microenvironmental support for GSCs could be critical to more effective GBM therapies. Three-dimensional (3D) culture models of the tumor microenvironment are powerful tools for identifying key biochemical and biophysical inputs that may support or inhibit malignant behaviors. Here, we developed synthetic poly(N-isopropylacrylamide-co-Jeffamine M-1000RTM acrylamide) or PNJ copolymers as a model 3D system for culturing GBM cell lines and low-passage patient-derived GSCs in vitro. These temperature responsive scaffolds reversibly transition from soluble to insoluble in aqueous solution by heating from room temperature to body temperature, thereby enabling easy encapsulation and release of cells in a 3D scaffold. We also designed this system with the capacity for presenting the cell-adhesion peptide sequence RGD for adherent culture conditions. Using this system, we identified conditions that promoted GBM proliferation, invasion, GSC phenotypes, and radiation resistance. In particular, using two separate patient-derived GSC models, we observed that PNJ scaffolds regulated self-renewal, provided protection from radiation induced cell death, and may promote stem cell plasticity in response to radiation. Furthermore, PNJ scaffolds produced de novo activation of the transcription factor HIF2?, which is critical to GSC tumorigenicity and stem plasticity. All together, these studies establish the robust utility of PNJ biomaterials as in vitro models for studying microenvironmental regulation of GSC behaviors and treatment resistance.
机译:诊断为胶质母细胞瘤(GBM)脑瘤后,手术切除,化学疗法和放射疗法共同可使患者中位生存期仅为15个月。重要的是,标准疗法无法解决大脑肿瘤微环境的动态调节问题,而后者主动支持肿瘤的进展和治疗抵抗力。此外,肿瘤微环境中的专门小生境维持了高度恶性的胶质母细胞瘤干样细胞(GSC)的种群。 GSC对传统的化学疗法和放射疗法有抵抗力,并可能导致近乎普遍的肿瘤复发率和相关发病率。因此,破坏对GSC的微环境支持对于更有效的GBM治疗至关重要。肿瘤微环境的三维(3D)培养模型是识别可能支持或抑制恶性行为的关键生化和生物物理输入的有力工具。在这里,我们开发了合成的聚(N-异丙基丙烯酰胺-共Jeffamine M-1000RTM丙烯酰胺)或PNJ共聚物作为3D模型系统,用于体外培养GBM细胞系和低通量患者来源的GSC。通过从室温加热至体温,这些温度响应性支架可逆地从水溶液的可溶状态转变为不溶性水溶液,从而使细胞易于包裹和释放在3D支架中。我们还设计了该系统,该系统具有在粘附培养条件下呈现细胞粘附肽序列RGD的能力。使用该系统,我们确定了促进GBM增殖,侵袭,GSC表型和抗辐射性的条件。特别是,使用两个单独的患者来源的GSC模型,我们观察到PNJ支架调节自我更新,保护细胞免受辐射诱导的细胞死亡,并可能促进对辐射的干细胞可塑性。此外,PNJ支架从头激活了转录因子HIF2α的活化,这对于GSC的致瘤性和茎的可塑性至关重要。总之,这些研究确立了PNJ生物材料作为体外模型研究GSC行为和治疗抗性的微环境调节的强大效用。

著录项

  • 作者

    Heffernan, John Michael.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Biomedical engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 160 p.
  • 总页数 160
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号