首页> 外文学位 >Part I. Energetic analysis of hydrogen bonds in model systems: Implications for enzymatic catalysis. Part II. Probing the role of metal ions in catalysis by the Tetrahymena group I ribozyme.
【24h】

Part I. Energetic analysis of hydrogen bonds in model systems: Implications for enzymatic catalysis. Part II. Probing the role of metal ions in catalysis by the Tetrahymena group I ribozyme.

机译:第一部分:模型系统中氢键的能量分析:对酶催化的影响。第二部分探索金属离子在四膜虫第I核酶催化中的作用。

获取原文
获取原文并翻译 | 示例

摘要

Part I. Charge rearrangements typically occur in the course of a reaction, leading to strengthening of hydrogen bonds between enzymatic groups and substrate moieties undergoing charge accumulation. However, the corresponding hydrogen bonds from water are also strengthened in the course of a solution reaction. Enzymes, of course, need to provide rate enhancements relative to solution reactions. Thus the question arises: can the enzymatic active site provide a greater strengthening of hydrogen bonds relative to water? Model studies suggest that the strengthening of hydrogen bonds upon charge accumulation can be greater in an enzymatic active site with low effective dielectric than in aqueous solution, thus providing a rate enhancement for an enzymatic reaction. Enzymes presumably utilize multiple hydrogen bonds with substrates for catalysis. This notion is supported by studies that show that the energetic effect of two pre-positioned hydrogen bonds within a model compound is large and nearly additive. Finally, model studies suggest that the energetics of hydrogen bonds are consistent with a simple electrostatic model.;Part II. RNA enzymes require divalent metal ions for catalysis. Determining the number of metal ions in an RNA active site and delineating their catalytic roles are crucial for understanding RNA catalysis. This presents a formidable challenge, however, as catalytic metal ions are bound within a sea of metal ions that coat an RNA. We have developed a novel approach that combines metal ion specificity switch methods with in-depth mechanistic analysis. This allows metal ion sites to be distinguished from one another, and was used to provide evidence for at least three metal ions positioned within the active site of the Tetrahymena group I ribozyme. Analysis of several metal ion sites and functional groups are described: the 2'-OH of the guanosine nucleophile and its associated metal ion, the 2'-OH preceding the cleavage site of the oligonucleotide substrate, and a metal ion that interacts with the nucleotide 3' to the scissile bond. Finally, results from these analyses suggested the presence of a network of active site interactions that may play an integral role in positioning of the substrates within the active site.
机译:第一部分,电荷重排通常在反应过程中发生,导致酶基与经历电荷积累的底物部分之间的氢键加强。但是,在溶液反应过程中,来自水中的相应氢键也得到了增强。酶当然需要相对于溶液反应提供速率增强。因此,出现了一个问题:相对于水,酶活性位点能否提供更大的氢键加强作用?模型研究表明,在具有低有效介电常数的酶促活性位点上,与水溶液相比,在电荷积累时氢键的增强作用更大,从而为酶促反应提供了速率提高。酶可能利用与底物的多个氢键进行催化。研究表明,模型化合物中两个预先定位的氢键的能量效应很大且几乎可加。最后,模型研究表明,氢键的能量与简单的静电模型是一致的。 RNA酶需要二价金属离子进行催化。确定RNA活性位点中金属离子的数量并确定其催化作用对于理解RNA催化至关重要。然而,这是一个巨大的挑战,因为催化金属离子结合在覆盖RNA的金属离子海中。我们开发了一种新颖的方法,将金属离子特异性切换方法与深入的机理分析相结合。这使得金属离子位点可以彼此区分开,并用于提供证据证明至少有三个金属离子位于四膜虫群I核酶的活性位点内。描述了几个金属离子位点和官能团的分析:鸟苷亲核试剂的2'-OH及其相关的金属离子,寡核苷酸底物裂解位点之前的2'-OH,以及与核苷酸相互作用的金属离子3'易断裂的债券。最后,来自这些分析的结果表明存在活性位点相互作用的网络,该网络可能在活性位点内基质的定位中起着不可或缺的作用。

著录项

  • 作者

    Shan, Shu-ou.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Molecular biology.;Biochemistry.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 354 p.
  • 总页数 354
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号