首页> 外文学位 >I. Energetics of Carbon-Hydrogen Bond Activation of Functionalized hydrocarbons II. Carbon-Hydrogen and Carbon-Carbon Nitride Bond Activation of Acetonitrile and Benzonitrile.
【24h】

I. Energetics of Carbon-Hydrogen Bond Activation of Functionalized hydrocarbons II. Carbon-Hydrogen and Carbon-Carbon Nitride Bond Activation of Acetonitrile and Benzonitrile.

机译:I.功能化烃的碳氢键活化能II。乙腈和苯甲腈的碳氢和碳氮化碳键活化。

获取原文
获取原文并翻译 | 示例

摘要

Several transition-metal systems have been used to establish correlations between metal-carbon and carbon-hydrogen bonds. In the following studies, the [Tp'RhL] fragment where Tp' = tris(3,5-dimethylpyrazolyl)borate and L = neopentyl isocyanide, is used to investigate C--H bond activation of molecules with strong C--H bonds. The first study (Chapter 2) examines C--H bond activation of fluorinated aromatic hydrocarbons. Photolysis of the precursor, Tp'RhL(carbodiimide) in neat fluoroarene resulted in C--H activation products of the type, Tp'RhL(arylF)H. Both the kinetic and thermodynamic selectivities of rhodium for different C--H bonds on the fluorinated aromatic were examined. A strong thermodynamic preference was observed for C--H activation ortho to two fluorine atoms as opposed to one. Competition experiments along with DeltaGre≠ values allow for the determination of relative Rh--Caryl , bond strengths and illustrate the large ortho fluorine effect on the strength of the Rh--Caryl bond. This study was the first to quantize experimentally the effect of an ortho fluorine on the strength of the metal-carbon bond.;In a similar study, the [Tp'RhL] fragment was used to investigate C--H bond activation of a series of linear alkylnitriles and chloroalkanes (Chapter 3). The selectivity of [Tp'RhL] for C--H bonds of alkylnitriles and chloroalkanes has been previously studied, but the Rh--C bond strengths could not be determined. New experiments and insight allowed for the determination of relative Rh--C bond strengths of these C--H activation complexes. It is found that the CN and Cl substituents dramatically strengthen the M--C bond more than anticipated if in the alpha-position, with the effect on bond strength diminishing substantially as these groups move further from the metal (i.e, beta, gamma, delta). Examination of M--C vs. C--H bond strengths allows for the quantization of resonance stabilization on metal-carbon bonds.;The work in Chapter 4 represents the first example of C--C cleavage by oxidative addition of the C--CN bond to a Rh(I) center. Here, the selectivity of the [Cp*Rh(PMe3)] fragment for both C--H and C--C bonds of acetonitrile is examined. Low temperature photolysis of Cp*Rh(PMe3)H2 in neat acetonitrile gives only the C--H activation product. Upon heating, this product is completely converted to the C--CN activation product. Density functional theory (DFT) was used to identify the transition states for C--H and C--C activation along with the ground state energies for all possible products. DFT calculations are in excellent agreement with the experimental observations and predict CH activation to be kinetically favored by ∼2 kcal/mol, and show a large thermodynamic preference for C--C activation (DeltaG° ≈13 kcal/mol).;Recent results in our group have shown the importance of the ancillary ligand on the ability of rhodium to cleave a C--CN bond. A rhodium metal fragment with a pi-acceptor ligand in place of a sigma-donating ligand shows exclusive selectivity for C--H activation, and does not show the same ability to cleave a C--CN bond. DFT calculations were utilized to study the energetics for C--H and C--CN bond activation of acetonitrile by four different metal fragments, [(dmpe)Ni], [TpRh(PMe3)], [TpRh(CNMe)] and [(C5Me5)Rh(CNMe)] (Chapter 5). The metal fragments with the pi-acceptor ligand (isocyanide) had much larger barriers to C--CN cleavage than the fragments with the sigma-donating ligand (phosphine). The ancillary phosphine ligand plays a crucial role in stabilizing the transition state to C--CN bond activation.
机译:几种过渡金属系统已用于建立金属碳键与碳氢键之间的相关性。在以下研究中,使用[Tp'RhL]片段(其中Tp'=三(3,5-二甲基吡唑基)硼酸酯和L =新戊基异氰酸酯)来研究具有强CH键的分子的CH键活化。第一项研究(第2章)研究了氟化芳烃的C–H键活化。前驱体Tp'RhL(碳二亚胺)在纯净的氟芳烃中的光解产生了类型为Tp'RhL(arylF)H的C-H活化产物。考察了铑对氟化芳族化合物上不同CH键的动力学和热力学选择性。观察到强烈的热力学偏好,即对两个氟原子(而不是一个)的CH活化。竞争实验以及DeltaGre≠值可以确定相对的Rh-Caryl键强度,并说明了较大的邻氟对Rh-Caryl键强度的影响。这项研究是第一个通过实验量化邻氟对金属-碳键强度的影响的研究。在类似的研究中,[Tp'RhL]片段被用于研究一系列碳氢键的活化直链烷基腈和氯代烷烃的合成(第3章)。先前已经研究了[Tp'RhL]对烷基腈和氯代烷烃的C–H键的选择性,但无法确定Rh–C键的强度。新的实验和洞察力允许确定这些CH活化复合物的相对Rh-C键强度。已发现,CN和Cl取代基可显着增强M-C键(如果位于α位置),其强度比键合强度的影响随着这些基团进一步远离金属(例如,β,γ,三角洲)。检验M-C与C-H键的强度可以量化金属-碳键上的共振稳定度;第4章的工作代表了通过氧化添加C-来裂解C-C的第一个例子。 -CN键连接到Rh(I)中心。在此,检查了[Cp * Rh(PMe3)]片段对乙腈的CH键和CC键的选择性。纯乙腈中Cp * Rh(PMe3)H2的低温光解仅产生CHH活化产物。加热后,该产物完全转化为C-CN活化产物。密度泛函理论(DFT)用于识别C–H和C–C活化的过渡态以及所有可能产物的基态能量。 DFT计算与实验观察结果非常吻合,并预测CH活化在动力学上有利于约2 kcal / mol,并且显示出对C-C活化的较大热力学偏好(DeltaG°≈ 13 kcal / mol)。我们小组的结果表明辅助配体对铑裂解C-CN键的能力的重要性。用pi受体配体代替供体sigma的铑金属片段显示出对CH活化的唯一选择性,并且没有表现出相同的裂解C-CN键的能力。利用DFT计算来研究由[[dmpe)Ni],[TpRh(PMe3)],[TpRh(CNMe)]和[[dppe)Ni]四种不同的金属碎片活化乙腈的CH和C-CN键的能量。 (C5Me5)Rh(CNMe)](第5章)。具有pi受体配体(异氰化物)的金属片段比具有sigma配体(膦)的片段具有更大的C-CN裂解障碍。辅助膦配体在稳定过渡态到C-CN键活化方面起着至关重要的作用。

著录项

  • 作者

    Evans, Meagan Elizabeth.;

  • 作者单位

    University of Rochester.;

  • 授予单位 University of Rochester.;
  • 学科 Chemistry Organic.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 226 p.
  • 总页数 226
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:44:03

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号