首页> 外文学位 >In-situ chromic-acid regeneration and purification process: Laboratory-scale feasibility study and mathematical modeling.
【24h】

In-situ chromic-acid regeneration and purification process: Laboratory-scale feasibility study and mathematical modeling.

机译:原位铬酸再生和纯化过程:实验室规模的可行性研究和数学建模。

获取原文
获取原文并翻译 | 示例

摘要

Acid chromate (Cr2O72–) plating baths become contaminated by Ni2+, Fe2+, Cu 2+ ions through corrosion of metal accessories, and by Cr3+ ions as a result of Cr2O72– reduction. These contaminants at mM level degrade the quality of hard-chrome deposit. It is, therefore, desirable to remove them continuously from the plating bath to avoid the high cost and liability associated with the disposal process. A recent technique used a “porous pot” in conjunction with a set of auxiliary electrodes serve to collect the contaminants as hydroxides.; In this work, we explore a novel membrane separation concept, that is, combining an ion-conducting polymer membrane with a fuel cell cathode to concentrate Cu, Fe, and Ni contaminants inside the membrane cell, while oxidizing Cr 3+ to Cr2O72– in the plating bath. The electrolysis cell consists of a rectangular tank divided into two compartments via an ion exchange membrane (Nafion-117), and uses a lead anode and a gas diffusion electrode as the cathode. The laboratory scale cell was used as a simulated plating bath containing Cu2+, Fe 2+, Ni2+, and Cr3+ as contaminants. The performance of the process was assessed by operating the cell under constant current conditions, different initial concentrations, and catholyte-to-anolyte volume ratios.; Electrochemical Impedance Spectroscopy (EIS) and stationary polarization curves were used to characterize the performance of a fuel cell cathode in the regeneration cell. The configuration of the MEA, current collector, and flow distributing backing plate may, during long-term operation lead to excessive ohmic resistance, which necessitates a special design of the cathode assembly. X-ray diffraction indicated the deposition of Cu, Fe, Ni, and Cr on the electrode matrix, leading to deactivation of the Pt-catalyst. The deactivation causes a rising cell voltage during electrolysis. Nevertheless, the energy consumption of the regeneration cell is at least one volt less than that of a comparable cell with hydrogen evolving cathode.; A mathematical model was developed to estimate contaminant fluxes due to migration, diffusion and convection in the laboratory-scale batch electrolysis cell. The mathematical model was used to estimate process parameters from experimental results, assuming quasi-stationary operation. Ionic mobilities of Cu, Fe, and Ni through the Nafion-117 membrane were found to be 5.4, 1.7, 5.2*10–10 cm2/V.s for Cu, Fe, Ni, respectively.
机译:酸性铬酸盐(Cr 2 O 7 2-)电镀液被Ni 2 + ,Fe 2 + ,Cu 2 + 离子通过腐蚀金属附件而被Cr 3+ 离子腐蚀,而Cr 2 O 7 2 – 还原。这些污染物的浓度为mM,会降低硬铬沉积物的质量。因此,希望从电镀浴中连续除去它们,以避免与处理过程相关的高成本和责任。最近的一种技术是将“多孔罐”与一组辅助电极结合使用,以收集污染物中的氢氧化物。在这项工作中,我们探索了一种新颖的膜分离概念,即将离子导电聚合物膜与燃料电池阴极结合在一起,以在膜细胞内浓缩Cu,Fe和Ni污染物,同时氧化Cr 3+ / super>在电镀液中生成Cr 2 O 7 2-。电解池由一个矩形的槽组成,该槽通过离子交换膜(Nafion-117)分成两个隔室,并使用铅阳极和气体扩散电极作为阴极。将实验室规模的槽用作包含Cu 2 + ,Fe 2 + ,Ni 2 + 和Cr 的模拟镀浴3 + 作为污染物。通过在恒定电流条件下,不同的初始浓度和阴极电解液与阳极电解液的体积比下操作电池来评估该过程的性能。电化学阻抗谱(EIS)和固定极化曲线用于表征再生电池中燃料电池阴极的性能。 MEA,集电器和流量分配背板的配置在长期运行过程中可能会导致欧姆电阻过大,这需要对阴极组件进行特殊设计。 X射线衍射表明Cu,Fe,Ni和Cr在电极基质上的沉积,导致Pt催化剂失活。失活导致电解期间电池电压升高。然而,再生电池的能量消耗比具有放氢阴极的可比电池至少少一伏。建立了数学模型来估算由于实验室规模的间歇式电解池中的迁移,扩散和对流而导致的污染物通量。该数学模型用于从实验结果估计过程参数,并假设为准平稳运行。 Cu,Fe和Ni通过Nafion-117膜的离子迁移率分别为5.4、1.7、5.2 * 10 –10 cm 2 / Vs ,镍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号