首页> 外文学位 >Lithium-7 MAS NMR and electrochemical studies of spinel-based positive electrode materials for lithium rechargeable batteries.
【24h】

Lithium-7 MAS NMR and electrochemical studies of spinel-based positive electrode materials for lithium rechargeable batteries.

机译:锂7 MAS NMR和尖晶石基可充电锂电池正极材料的电化学研究。

获取原文
获取原文并翻译 | 示例

摘要

Magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy and electrochemical techniques have been used to determine dominant failure modes of LiMn2O4-based positive electrode materials for lithium rechargeable batteries, and to elucidate the role of metal-for-manganese substitution in the stabilization of the material towards electrochemical cycling on the 4V plateau.; Metal substituted spinels, LiMxMn2−xO 4 (M = Li, Zn, Ni, Al, Co, Cr) have been synthesized by traditional ceramic techniques, and characterized with Xray Diffraction (XRD), Super Quantum Interference Device (SQUID) magnetometry, electrochemical techniques, and NMR spectroscopy. The 7Li NMR spectra of metal-substituted spinels are characterized by a large peak at ∼500ppm, arising from “normal” lithium, surrounded by 12 manganese nearest-neighbors, and smaller peaks spanning 530–650ppm, arising from “near-defect” lithium, with one or more lattice defects or substituting metals in the coordination sphere. As the level of substitution increases, the relative intensity of the near-defect peak increases, and both peaks broaden. It is determined that the residual MAS linewidth arises from chemical shift dispersion. The increase in the linewidth for the normal lithium peak upon substitution therefore suggests that substitution affects bond lengths, angles, and strengths throughout the material, not just in the vicinity of the substituting atom.; Various compositions were cycled galvanostatically (C/15 rate) 100 times from 3.3V to 4.4V vs. Li metal at room temperature using a 1M LiPF6 in EC/DMC (1:2) electrolyte. A rapid capacity fade was observed for LiMn 2O4, which was mitigated to varying extents by substitution. For spinels that displayed high initial capacity, the Cr-substituted spinels showed the best performance. After cycling, the 7Li MAS NMR spectra of the spinels changed in characteristic ways: the peaks broadened, and the near-defect peaks increased in relative intensity. These changes were most pronounced for the poor-performing LiMn2O4, and were almost undetectable in the most robust compositions.; To determine the cause of the NMR-detectable structural change upon cycling, and thus the dominant mode of failure, the results for the cycled electrodes were compared to results for electrodes which had been exposed to model degradation processes. These processes were chosen so as to introduce specific damage into the spinel structure, mimicking failure by one of the many possible mechanisms proposed in the literature. This comparison provided substantial evidence that manganese dissolution and concomitant Li-for-Mn ion exchange at the end-of-discharge is the dominant mode of failure on the 4V plateau. Cr-substitution effectively mitigated this failure mode.
机译:魔角旋转核磁共振(MAS NMR)光谱和电化学技术已被用于确定锂可充电电池的LiMn 2 O 4 基正极材料的主要失效模式,并阐明金属对锰的取代在稳定材料对4V平台上电化学循环的作用。金属取代的尖晶石LiM x Mn 2-x O 4 (M = Li,Zn,Ni,Al,Co,Cr)通过传统的陶瓷技术合成,并通过X射线衍射(XRD),超级量子干涉仪(SQUID)磁力测定法,电化学技术和NMR光谱进行了表征。金属取代的尖晶石的 7 Li NMR谱图的特征是在约500ppm处有一个大峰,这是由“正常”锂引起的,周围有12个锰最近邻峰,而较小的峰跨越530-650ppm,由“近缺陷”锂产生,在配位球中具有一个或多个晶格缺陷或替代金属。随着取代水平的增加,接近缺陷峰的相对强度也增加,并且两个峰均变宽。可以确定残留的MAS线宽是由化学位移分散引起的。因此,正常锂峰在取代时线宽的增加表明,取代会影响整个材料的键长,角度和强度,而不仅是在取代原子附近。在室温下,使用1M LiPF 6 在EC / DMC(1:2)电解质中,各种组分从恒电位(C / 15速率)从3.3V循环到4.4V(相对于Li金属)。观察到LiMn 2 O 4 的容量快速衰减,其通过取代在不同程度上减轻了。对于显示出高初始容量的尖晶石,Cr取代的尖晶石表现出最佳性能。循环后,尖晶石的 7 Li MAS NMR光谱以特征性方式变化:峰变宽,而近缺陷峰的相对强度增加。对于性能较差的LiMn 2 O 4 ,这些变化最为明显,而在最坚固的组合物中几乎无法检测到。为了确定循环时NMR可检测到的结构变化的原因,从而确定主要的失效模式,将循环电极的结果与暴露于模型降解过程的电极的结果进行了比较。选择这些过程是为了将特定的破坏引入到尖晶石结构中,通过文献中提出的许多可能的机制之一来模拟失败。该比较提供了充分的证据,表明在放电结束时锰的溶解和伴随的锂锰离子交换是4V平台失效的主要方式。铬替代有效地减轻了这种失效模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号