首页> 外文学位 >Adaptive temporal and wavefront aberration correction for ultrafast lasers with a membrane deformable mirror.
【24h】

Adaptive temporal and wavefront aberration correction for ultrafast lasers with a membrane deformable mirror.

机译:具有膜可变形镜的超快激光的自适应时间和波前像差校正。

获取原文
获取原文并翻译 | 示例

摘要

Two adaptive optic systems for correction of either temporal phase error and wavefront errors for ultrafast pulses are demonstrated. These systems consists of a computer controlled micromachined membrane deformable mirror (MMDM) and a genetic learning algorithm (GA). Nonlinear excitation such as two-photon fluorescence or second harmonic generation are used as feedback to the GA to determine the appropriate correction to apply to the mirror. Two MMDMs are used, a 30 x 8 mm, 39 actuator linear MMDM for pulse-shaping applications and a 15 mm diameter, 37 actuator wavefront MMDM.; Linear pre-compensation of self-phase modulation (SPM) was experimentally demonstrated utilizing the linear MMDM in a linear pulse-shaper for ultrafast pulses. The nonlinear nature of SPM makes arbitrary polynomial compensation necessary. Pre-compensation of SPM generated in an optical fiber by a 10 fs pulse reduced the pulse from 30fs to 20fs.; We demonstrates adaptive correction with the wavefront MMDM by corrected for coma and astigmatism in a reflective multiphoton scanning microscope. An f1, parabola produces a very tight focus with no aberration when it is perfectly aligned. However, when beam scanning is used for two-dimensional imaging the image is severely aberrated. The MMDM and the GA are able to find the best possible wavefront for aberration correction for each scanning position. The horizontal scanning range was increased from 60 μm without the adaptive correction to 170 μm, ≈3 times the uncorrected scanning range, and the vertical scanning range was increased by a comparable amount. This resulted in an increase in scanning area of 9 times.; The wavefront MMDM was also used for adaptive correction of spherical aberration from focusing from air, deep into a water-based sample. This depth-based aberration results from an index of refraction mismatch between the sample and the immersion medium of the objective and occurs regardless of beam scanning or sample scanning. By dynamically correcting for the first order spherical aberration in a water-Cumarin dye solution, the depth that can be imaged with a 40x/0.6NA objective was extended from 150 μm to 600 μm.; Adaptive aberration correction for photodisruption is also being investigated for ophathalmological and micromachining applications.
机译:演示了两种自适应光学系统,用于校正超快脉冲的时间相位误差和波阵面误差。这些系统由计算机控制的微机械膜可变形镜(MMDM)和遗传学习算法(GA)组成。诸如双光子荧光或二次谐波生成之类的非线性激发被用作对GA的反馈,以确定要应用于反射镜的适当校正。使用两种MMDM,一种用于脉冲整形应用的30 x 8 mm,39个执行器线性MMDM和一个直径15 mm,37个执行器的波前MMDM。利用线性MMDM在线性脉冲整形器中针对超快脉冲,通过实验证明了自相位调制(SPM)的线性预补偿。 SPM的非线性特性使得必须进行任意多项式补偿。通过10 fs脉冲对光纤中产生的SPM进行预补偿,使脉冲从30fs减少到20fs。我们通过反射多光子扫描显微镜中的昏迷和散光校正,展示了波前MMDM的自适应校正。 f 1抛物线在完全对准时会产生非常紧密的焦点,并且没有像差。然而,当光束扫描用于二维成像时,图像严重像差。 MMDM和GA能够找到可能的最佳波前,以便对每个扫描位置进行像差校正。水平扫描范围从没有进行自适应校正的60μm增加到170μm,约为未校正扫描范围的3倍,垂直扫描范围增加了相当的数量。扫描面积增加了9倍。波前MMDM还用于从空中聚焦到水基样品中的球差的自适应校正。这种基于深度的像差是由样品与物镜的浸没介质之间的折射率不匹配导致的,并且无论光束扫描还是样品扫描都发生。通过动态校正Cumarin染料水溶液中的一阶球差,可以用40 x /0.6 NA 物镜成像的深度从150μm扩展到至600微米还针对光眼学和微加工应用研究了用于光干扰的自适应像差校正。

著录项

  • 作者

    Sherman, Leah Bruner.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Physics Optics.; Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 109 p.
  • 总页数 109
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 光学;无线电电子学、电信技术;
  • 关键词

  • 入库时间 2022-08-17 11:46:40

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号