x +f Perturbation of the nonlinear Schrodinger equation from a linear perspective: Vector-valued singular integrals from a scalar perspective.
首页> 外文学位 >Perturbation of the nonlinear Schrodinger equation from a linear perspective: Vector-valued singular integrals from a scalar perspective.
【24h】

Perturbation of the nonlinear Schrodinger equation from a linear perspective: Vector-valued singular integrals from a scalar perspective.

机译:从线性角度看非线性Schrodinger方程的摄动:从标量角度看向量值的奇异积分。

获取原文
获取原文并翻译 | 示例

摘要

Chapter 1. In this section we study the asymptotic properties of solutions to the equation f′′x +fx 2fx+Ef x-Vxf x=0, E0, treating the potential V(x) as a perturbation. The linear part of this equation has been analyzed quite extensively, yielding results about the spectral theory of one-dimensional Schrödinger operators. Our main result is the following statement: If |V(x)| ≤ C|x|−β, β > 32 , then, for every energy E > 0, almost every perturbed solution asymptotically approaches a solution to the unperturbed equation.; This differs from comparable results in the linear setting in two respects. First, the lower limit on β is 32 as opposed to ½ for the linear Schrödinger operator. Second, the asymptotic description holds for almost every solution at every energy rather than holding for every solution at almost every energy.; Both discrepancies arise from the same basic consequence of nonlinearity: even at a fixed energy E, solutions to the unperturbed nonlinear equation may oscillate with different periods. Their peaks and troughs do not remain in tandem as x → ∞ but instead drift in and out of phase with one another. The stronger decay condition on V is necessary to control the rate at which perturbed solutions “drift” in relation to any given unperturbed solution.; The structure of the almost-everywhere conclusion is derived from a Fourier analysis argument in which the period of unperturbed solutions plays a crucial role. In the linear case, all solutions to the unperturbed equation with a fixed energy have the same period, therefore the value of E is the determining factor. In the nonlinear case, where the period of unperturbed solutions depends on additional parameters, the set of exceptional solutions does not possess such a transparent structure.; Chapter 2. The Muckenhoupt Ap condition concisely describes the class of measures dμ = w(x)dx for which several noteworthy operators (the Hilbert Transform and Hardy-Littlewood maximal function, to name two) are bounded on Lp(dμ). In the setting of vector-valued functions, weights w( x) are defined to take values in the space of nonnegative self-adjoint matrices, and it is natural to ask what condition on matrix weights will continue to guarantee the Lp-boundedness of these operators.; The theory of matrix Ap weights, as developed by Nazarov, Treil, and Volberg, answers this question for singular integral operators. Their approach is quite different from the classical scalar method, eschewing the Hardy-Littlewood maximal function and distributional estimates in favor of Carleson measures and a dyadic embedding operator. Some of the results thus obtained were novel even when restricted to scalars as a special case. In the current work we attempt to perform the opposite feat: employing techniques commonly associated with the scalar case to gain new perspectives on matrix Ap
机译:第1章。在本节中,我们研究方程 f '′' x + f x 2 f x + Ef x -V x f x = 0,< hsp sp =“ 0.265”> E> 0, 处理潜在的 V x )作为扰动。已对该方程的线性部分进行了广泛的分析,得出有关一维Schrödinger算子的谱理论的结果。我们的主要结果是以下语句: If | V x )| ≤ | x | ,β> 3 2 然后,对于每种能量 E 几乎所有渐近扰动解逼近无扰动方程的解。这在两个方面与线性设置中的可比较结果不同。首先,β的下限是 3 2 ,而不是½线性Schrödinger运算符。其次,渐近描述适用于几乎所有能量的每个解而不是适用于几乎所有能量的每个解。两种差异都源于非线性的相同基本结果:即使在固定能量 E 的情况下,对不受干扰的非线性方程的解也可能会以不同的周期振荡。它们的波峰和波谷并没有以 x →∞的形式串联在一起,而是彼此相移和异相。相对于任何给定的未扰动解,控制 V 的更强衰减条件对于控制扰动解的“漂移”速率是必要的。无处不在的结论的结构源自傅立叶分析论证,在该论证中,无扰动的解的时间段起着至关重要的作用。在线性情况下,具有固定能量的无扰动方程的所有解都具有相同的周期,因此 E 的值是确定因素。在非线性情况下,不受干扰的解的周期取决于附加参数,这组例外解不具有这种透明的结构。 第2章。 Muckenhoupt A p 条件简明地描述了 d μ= w x dx ,其中几个值得注意的运算符(希尔伯特变换和Hardy-Littlewood最大函数,仅举两个)在 L p 上有界( d μ)。在向量值函数的设置中,权重 w x )被定义为在非负自伴矩阵空间中取值,很自然地问什么矩阵权重的条件将继续保证这些算子的 L p 有界。由Nazarov,Treil和Volberg提出的矩阵 A p 权重理论为奇异积分算子回答了这个问题。他们的方法与经典的标量方法完全不同,避开了Hardy-Littlewood极大函数和分布估计,而采用Carleson测度和二元嵌入算子。这样获得的一些结果即使是在特殊情况下仅限于标量的情况下也是新颖的。在当前的工作中,我们尝试执行相反的壮举:使用通常与标量情况关联的技术来获得关于矩阵 A p

著录项

  • 作者

    Goldberg, Michael Joseph.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 63 p.
  • 总页数 63
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 数学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号