首页> 外文学位 >Power scalable and low power design techniques for pipeline ADCs.
【24h】

Power scalable and low power design techniques for pipeline ADCs.

机译:适用于流水线ADC的功率可扩展和低功率设计技术。

获取原文
获取原文并翻译 | 示例

摘要

The proliferation of portable electronic devices with high data-rate wireless communication capabilities and the increasing emphasis on energy efficiency is continuously applying pressure on the performance and power consumption of ADCs and other mixed-signal systems. Research on increasing the power efficiency of pipeline ADCs, which are popular for their high resolution and speed capabilities, has focused on power scalability and mixed-signal power reduction techniques such as opamp-sharing. This dissertation presents the research and development of both a linear power scalable technique for implementing scalable pipeline ADCs and a Current-Reuse OTA topology that facilitates opamp-sharing in low power pipeline ADCs.;A power scalable 12b pipeline ADC implemented by enabling or disabling MDAC OTAs in parallel is presented. Power scaling is achieved without varying the DC bias conditions of critical analog nodes, reducing design complexity and allowing an existing design to be rapidly reconfigured for new specifications. The ADC can be designed for optimal power consumption over the entire sampling rate range due to linear power scaling provided by the parallel OTA approach. The proposed ADC operates over a sampling rate range of 20MS/s to 40MS/s with >62dB SNDR. The analog power varies linearly from 36mW at 20MS/s to 72mW at 40MS/s. The ADC was fabricated in 0.18microm CMOS process and occupies a die area of 1.9mm2.;A 10b opamp-sharing pipeline ADC using Current-Reuse OTAs with dual NMOS differential inputs is presented. The current-reuse OTA topology facilitates opamp-sharing between all of the consecutive pipeline stages, minimizing power consumption and die area. Analog transistors in the OTA are always biased in saturation ensuring no loss of settling time due to OTA power turn-on delays. The ADC is fabricated in a 0.18microm CMOS process and occupies an active die area of 0.7mm2 At 50MS/s, maximum SNDR of 58dB (ENOB=9.3b) is achieved with 9.2mW analog power consumption on a 1.8V supply.
机译:具有高数据速率无线通信功能的便携式电子设备的激增以及对能效的日益重视,不断给ADC和其他混合信号系统的性能和功耗带来压力。关于提高流水线ADC的功率效率的研究一直以功率可扩展性和混合信号功率降低技术(例如运算放大器共享)为重点,该技术以其高分辨率和速度性能而广受欢迎。本文介绍了用于实现可扩展流水线ADC的线性功率可扩展技术和可促进低功率流水线ADC运算共享的电流重用OTA拓扑的研究与开发。通过启用或禁用MDAC来实现功率可扩展12b流水线ADC提出了并行的OTA。在不改变关键模拟节点的直流偏置条件的情况下实现了功率缩放,从而降低了设计复杂性,并允许针对新规范快速重新配置现有设计。由于并行OTA方法提供了线性功率缩放功能,因此可以将ADC设计为在整个采样速率范围内实现最佳功耗。拟议的ADC的采样率范围为20MS / s至40MS / s,SNDR> 62dB。模拟功率从20MS / s时的36mW到40MS / s时的72mW线性变化。该ADC采用0.18微米CMOS工艺制造,占地面积为1.9mm2。提出了一种采用电流重用OTA和双NMOS差分输入的10b运算放大器共享流水线ADC。电流重复使用的OTA拓扑有助于在所有连续的流水线级之间共享运算放大器,从而将功耗和芯片面积降至最低。 OTA中的模拟晶体管始终处于饱和偏置状态,以确保不会因OTA上电延迟而损失建立时间。该ADC采用0.18 microm CMOS工艺制造,占据了0.7mm2的有源管芯面积。在50MS / s的速率下,在1.8V电源上具有9.2mW的模拟功耗,可实现58dB(ENOB = 9.3b)的最大SNDR。

著录项

  • 作者

    Chandrashekar, Kailash.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 65 p.
  • 总页数 65
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号