首页> 外文学位 >Kinetic assembly of block copolymers in solution helical cylindrical micelles and patchy nanoparticles.
【24h】

Kinetic assembly of block copolymers in solution helical cylindrical micelles and patchy nanoparticles.

机译:嵌段共聚物在溶液螺旋圆柱状胶束和片状纳米颗粒中的动力学组装。

获取原文
获取原文并翻译 | 示例

摘要

There is always an interest to understand how molecules behave under different conditions. One application of this knowledge is to self-assemble molecules into increasingly complex structures in a simple fashion. Self-assembly of amphiphilic block copolymer in solution has produced a large variety of nanostructures through the manipulation in polymer chemistry, assembly environment, and additives. Moreover, some reports suggest the formation of many polymeric assemblies is driven by kinetic process. The goal of this dissertation is to study the influence of kinetics on the assembly of block copolymer. The study shows kinetic control can be a very effective way to make novel polymeric nanostructures. Two examples discussed here are helical cylindrical micelles and patchy nanoparticles.;Helical cylindrical micelles are made from the co-assembly of amphiphilic triblock copolymer poly(acrylic acid)-block-poly(methyl acrylate)- block-polystyrene and organoamine molecules in a mixture of tetrahydrofuran (THF) and water (H2O). This system has already shown promise of achieving many assembled structures. The unique aspects about this system are the use of amine molecules to complex with acid groups and the existence of cosolvent system. Application of amine molecules offers a convenient control over assembled morphology and the introduction of PMA-PS selective solvent, THF, promotes the mobility of the polymer chains. In this study, multivalent organoamine molecules, such as diethylenetriamine and triethylenetetramine, are used to interact with block copolymer in THF/water mixture. As expected, the assembled morphologies are dependent on the polymer architecture, selection and quantity of the organoamine molecules, and solution composition. Under the right conditions, unprecedented, multimicrometer-long, supramolecular helical cylindrical micelles are formed. Both single-stranded and double-stranded helices are found in the same system. These helical structures share uniform structural parameters, including the width of the micelles, width of the helix, and the pitch distance. There is no preference to the handedness, and both handednesses are observed, which is understandable since there are no chiral molecules or specific binding effects applied during the assembly.;The helical structure is a product of kinetic process. Cryogenic transmission electron microscopy has been employed to monitor the morphological transformation. The study indicates there are two complicated but reproducible kinetic pathways to form the helices. One pathway involves the stacks of bended cylinders at early stages and the subsequent interconnection of these bended cylinders. Spherical micelles bud off of the interconnected nanostructure as the final step towards a defect-free helix. Another kinetic pathway shows very short helices are formed at first and aligned via head-to-tail style in the solution, and the subsequent sequential addition of these short helices results in prolonged mature helices.;By using a ninhydrin-staining technique, amine molecules within the micellar corona are visualized and confirmed to preferentially locate in the inner side of the helical turns. The aggregation of amine molecules provides a strong attraction force due to electrostatic association between oppositely charged amine and acid groups and accumulation of hydrogen bonding among amine molecules to coil the cylindrical micelles into helical twisting features which are stabilized by the repulsion forces due to the chain packing frustration within the hydrophobic core, steric hindrance of amine molecules as well as the Coulomb repulsion of the excess charged amine groups.;The formation mechanism of the helix offers the feasibility to manipulate the helical pitch distance and formation kinetics. The helical pitch distance can be enlarged or shrunk by varying the type and amount of amine molecules used in assembly, introducing inorganic salts, and changing pH. Luckily, the helical structure can be preserved permanently by inducing the amide reaction between amine and carboxylic acid groups. The kinetics of the helix is also subject to many factors, including used amine molecules, inorganic salts and preparation procedure. The aging time for the helix can be either reduced or prolonged. Furthermore, even though the helical formation is pathway-dependent, helical formation can still be triggered from extended cylindrical micelles or stacks of disklike micelles as long as a right condition is applied.;Another strategy for kinetic assembly of block copolymer is presented as well. A novel patchy nanoparticle has been produced following this strategy. The patches are formed on the surface of polymeric colloids due to the phase separation of two chemically unlike segments. Certain level of mobility of the polymer chains is required for the blocks to segregate into patches. More importantly, the number and distribution geometry of the patches are related to the particle size. Future efforts are needed to control the particle size in order to manufacture uniform nanoparticles with desired patch patterns for the applications in nanotechnology, drug delivery and nanodevices.
机译:人们总是有兴趣了解分子在不同条件下的行为。该知识的一种应用是以简单的方式将分子自组装为越来越复杂的结构。通过在聚合物化学,组装环境和添加剂中的操作,两亲嵌段共聚物在溶液中的自组装产生了各种各样的纳米结构。而且,一些报告表明许多聚合物组件的形成是由动力学过程驱动的。本文的目的是研究动力学对嵌段共聚物组装的影响。研究表明动力学控制可能是制造新型聚合物纳米结构的非常有效的方法。此处讨论的两个例子是螺旋圆柱状胶束和斑片状纳米颗粒。螺旋圆柱状胶束是由两亲性三嵌段共聚物聚(丙烯酸)-嵌段-聚(丙烯酸甲酯)-嵌段-聚苯乙烯和有机胺分子在混合物中共同组装而成的四氢呋喃(THF)和水(H2O)。该系统已经显示出实现许多组装结构的希望。关于该系统的独特方面是使用胺分子与酸基络合以及共溶剂系统的存在。胺分子的应用为组装的形态提供了方便的控制,PMA-PS选择性溶剂THF的引入促进了聚合物链的迁移。在这项研究中,多价有机胺分子(例如二亚乙基三胺和三亚乙基四胺)用于与THF /水混合物中的嵌段共聚物相互作用。如预期的那样,组装的形态取决于聚合物的结构,有机胺分子的选择和数量以及溶液的组成。在适当的条件下,会形成空前的,数微米长的超分子螺旋圆柱状胶束。在同一系统中发现单链和双链螺旋。这些螺旋结构共享相同的结构参数,包括胶束的宽度,螺旋的宽度和节距。没有偏向性,并且观察到两种偏向性,这是可以理解的,因为在组装过程中没有手性分子或特定的结合作用。螺旋结构是动力学过程的产物。低温透射电子显微镜已用于监测形态转变。研究表明,有两种复杂但可重现的动力学途径形成螺旋。一种途径涉及在早期阶段的弯曲圆柱体的堆叠以及这些弯曲圆柱体的随后互连。球形胶束从相互连接的纳米结构中萌芽,是迈向无缺陷螺旋的最后一步。另一个动力学路径表明,最初形成的螺旋非常短,并且在溶液中通过头尾样式对齐,随后依次添加这些短螺旋会导致延长的成熟螺旋。;通过茚三酮染色技术,胺分子可视化并确认胶束日冕中的分子优先位于螺旋线匝的内侧。胺分子的聚集由于带相反电荷的胺和酸基团之间的静电缔合以及胺分子之间氢键的积累而提供了强大的吸引力,从而使圆柱状胶束卷成螺旋形扭曲特征,并通过链堆积的排斥力而得以稳定疏水核内部的受阻,胺分子的空间位阻以及过量带电胺基团的库仑排斥。螺旋的形成机理为操纵螺旋螺距和形成动力学提供了可行性。可以通过改变组装中使用的胺分子的类型和数量,引入无机盐并改变pH来增大或缩小螺旋间距。幸运的是,通过诱导胺和羧酸基团之间的酰胺反应,可以永久保留螺旋结构。螺旋的动力学也受许多因素影响,包括使用的胺分子,无机盐和制备方法。螺旋的老化时间可以减少或延长。此外,即使螺旋形成是依赖于途径的,只要应用适当的条件,仍然可以通过延伸的圆柱形胶束或盘状胶束的堆积来触发螺旋形成。还提出了嵌段共聚物动力学组装的另一种策略。按照这种策略已经产生了新颖的斑驳的纳米颗粒。由于两个化学上不同的链段的相分离,在聚合物胶体的表面上形成了补丁。聚合物链需要一定水平的迁移率,以使嵌段分离成小块。更重要的是,斑块的数量和分布几何形状与粒径有关。为了制造具有所需补丁图案的均匀纳米颗粒,需要进一步的努力来控制粒径,以用于纳米技术,药物递送和纳米装置中。

著录项

  • 作者

    Zhong, Sheng.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Chemistry Polymer.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 209 p.
  • 总页数 209
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号