首页> 外文学位 >Electro-optic investigation of the n-alkanethiol GaAs(001) interface: Surface phenomena and applications to photoluminescence-based biosensing.
【24h】

Electro-optic investigation of the n-alkanethiol GaAs(001) interface: Surface phenomena and applications to photoluminescence-based biosensing.

机译:正链烷硫醇GaAs(001)界面的电光研究:表面现象及其在基于光致发光的生物传感中的应用。

获取原文
获取原文并翻译 | 示例

摘要

Semiconductor surfaces coupled to molecular structures derived from organic chemistry form the basis of an emerging class of field-effect devices. In addition to molecular electronics research, these interfaces are developed for a variety of sensor applications in the electronic and optical domains. Of practical interest are self-assembled monolayers (SAMs) comprised of n-alkanethiols [HS(CH2)n], which couple to the GaAs(001) surface through S-GaAs covalent bond formation. These SAMs offer potential functionality in terms of the requisite sensor chemistry and the passivation effect such coupling is known to afford.;In this thesis, the SAM-GaAs interface is investigated in the context of a photonic biosensor based on photoluminescence (PL) variation. The scope of the work is categorized into three parts: i) the structural and compositional analysis of the surface using X-ray photoelectron spectroscopy (XPS), ii) the investigation of electronic properties at the interface under equilibrium conditions using infrared (IR) spectroscopy, the Kelvin probe method, and XPS, and iii) the analysis of the electro-optic response under steady-state photonic excitation, specifically, the surface photovoltage (SPV) and PL intensity.;Using a partial overlayer model of angle-resolved XPS spectra in which the component assignments are shown to be quantitatively valid, the coverage fraction of methyl-terminated SAMs is shown to exceed 90%. Notable among the findings are a low-oxide, Ga-rich surface with elemental As present in sub-monolayer quantities consistent with theoretical surface morphologies. Modal analysis of transmission IR spectra show that the SAM molecular order is sufficient to support a Beer-Lambert determination of the IR optical constants, which yields the observation of a SAM-specific absorbance enhancement. By correlation of the IR absorbance with the SAM dipole layer potential, the enhancement mechanism is attributed to the vibrational moments added by the electronic polarizability in the static field of the SAM. Lastly, the surface Fermi level position is determined by XPS and is used to interpret SPV results in terms of a thiol-induced reduction of the surface cross-section for minority carrier-capture. Numerical analysis confirms this result based on the carrier transport theory of PL intensity by means of a reduction of the surface recombination velocity.;Keywords: photonics, biosensor, GaAs, self-assembled monolayers, X-ray photoelectron spectroscopy, IR spectroscopy, photoluminescence, surface Fermi level, surface photovoltage.
机译:耦合到有机化学分子结构的半导体表面构成了新兴的场效应器件的基础。除分子电子学研究外,这些接口还为电子和光学领域的各种传感器应用开发。实际感兴趣的是由正链烷硫醇[HS(CH2)n]组成的自组装单分子层(SAMs),该分子通过S-GaAs共价键形成与GaAs(001)表面偶联。这些SAM在必要的传感器化学性质和这种耦合作用的钝化作用方面提供了潜在的功能。在本文中,基于光致发光(PL)变化,在光子生物传感器的背景下研究了SAM-GaAs界面。工作范围分为三个部分:i)使用X射线光电子能谱(XPS)对表面进行结构和成分分析,ii)使用红外(IR)光谱在平衡条件下研究界面处的电子性质,开尔文探针法和XPS,以及iii)分析稳态光子激发下的电光响应,特别是表面光电压(SPV)和PL强度。;使用角度分辨XPS的部分覆盖模型光谱显示,其中的成分分配在数量上是有效的,甲基封端的SAM的覆盖率显示超过90%。这些发现中值得注意的是低氧化物,富含Ga的表面,其元素As的亚单层含量与理论表面形态一致。透射红外光谱的模态分析表明,SAM分子顺序足以支持比尔-兰伯特测定IR光学常数,从而观察到SAM特定的吸光度增强。通过将红外吸收率与SAM偶极子层电势相关联,增强机制归因于SAM静态场中电子极化率所增加的振动矩。最后,表面费米能级的位置由XPS确定,并用于解释SPV结果,该结果是由硫醇引起的少数载流子捕获的表面横截面减小。数值分析通过降低表面复合速度,基于PL强度的载流子输运理论证实了这一结果。关键词:光子学,生物传感器,GaAs,自组装单层,X射线光电子能谱,IR光谱,光致发光,表面费米能级,表面光电压。

著录项

  • 作者

    Marshall, Gregory M.;

  • 作者单位

    Universite de Sherbrooke (Canada).;

  • 授予单位 Universite de Sherbrooke (Canada).;
  • 学科 Chemistry Physical.;Engineering Electronics and Electrical.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 196 p.
  • 总页数 196
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号