首页> 外文学位 >Biomimetic phenomenological modeling of skeletal muscle isometric contraction and its application to a pneumatic muscle force control system.
【24h】

Biomimetic phenomenological modeling of skeletal muscle isometric contraction and its application to a pneumatic muscle force control system.

机译:骨骼肌等距收缩的仿生现象学建模及其在气动肌肉力控制系统中的应用。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation entails the development, implementation, and validation of a unique biomimetic phenomenological model for biological skeletal muscle, as innovatively represented by four principal and consecutive compartments (biophysical, biochemical, and biomechanical phases) characteristic of isometric excitation-contraction physiology, and coupled by a system of simultaneous, first-order linear ordinary differential equations. The model is based upon biological compartmental transport kinetics and irreversible thermodynamic energy transformation, and represents a distinct improvement over other biomimetic models since it additionally accounts for the spatiotemporal recruitment and neuromuscular control strategies employed by the peripheral nervous system. The biomimetic model was derived and validated using physiological parameter data published in the literature, and subsequently implemented in a C ++ authored software controller for the force control of a pneumatic muscle actuator. The work represents a unique and significant contribution to the fundamental knowledge base of biomedical engineering as the new mathematical model can be directly translated into engineering design practice through optimization of the pneumatic muscle plant.; A revision of the Hill-type muscle model is introduced that describes the chemo-mechanical energy conversion process (energetic) and the internal element stiffness variation (viscoelastic) during a skeletal muscle isometric force twitch contraction. The derivation of this energetic-viscoelastic model is described by a parsimonious first-order linear ordinary differential equation with constant energetic and viscoelastic coefficients. The model has been implemented as part of a new biomimetic phenomenological model, which describes the excitation-contraction coupling process in biological skeletal muscle.; Finally, this dissertation describes the development, implementation, and validation of a unique biomimetic software controller for open- and closed-loop isometric force control of pneumatic muscle. The biomimetic controller is based upon the physiological spatiotemporal strength-recruitment strategies characteristic of motor units within the biological peripheral nervous system for isometric force target tracking and acquisition, and consists of four C++ sub-controllers (baseline biomimetic differential equations without recruitment, pure spatial recruitment, pure temporal recruitment, and combined spatiotemporal recruitment). Based upon our review of the literature, this research represents a unique application in isometric force control of pneumatic muscle, and represents the first report of a biomimetic software controller design that actually performs combined spatiotemporal recruitment.
机译:本论文涉及生物骨骼肌独特的仿生现象学模型的开发,实施和验证,该模型以等长激发-收缩生理学特征的四个主要和连续部分(生物物理,生化和生物力学阶段)创新地表示,并通过联立的一阶线性常微分方程组。该模型基于生物区室转运动力学和不可逆的热力学能量转化,并且比其他仿生模型有明显的改进,因为它另外考虑了周围神经系统采用的时空募集和神经肌肉控制策略。仿生模型是使用文献中公布的生理参数数据导出和验证的,随后在C ++编写的软件控制器中实现,用于控制气动肌肉执行器的力。该工作代表了对生物医学工程基础知识的独特而重要的贡献,因为可以通过优化气动肌肉设备将新的数学模型直接转化为工程设计实践。引入了希尔型肌肉模型的修订版,该模型描述了骨骼肌等轴测力抽搐收缩期间的化学机械能转换过程(能量)和内部元素刚度变化(粘弹性)。该能量-粘弹性模型的推导由具有恒定的能量和粘弹性系数的简约一阶线性常微分方程描述。该模型已作为新的仿生现象学模型的一部分实施,该模型描述了生物骨骼肌中的兴奋收缩耦合过程。最后,本文描述了一种独特的仿生软件控制器的开发,实现和验证,该控制器可用于气动肌肉的开环和闭环等距力控制。仿生控制器基于生物外围神经系统中运动单元的生理时空强度补充策略,用于等距目标力跟踪和获取,由四个C ++子控制器组成(基线无仿生的仿生微分方程,纯空间募集) ,纯时间招募和时空招募相结合)。基于我们对文献的回顾,这项研究代表了在气动肌肉的等轴测力控制中的独特应用,并且代表了仿生软件控制器设计的首次报告,该设计实际上执行了组合的时空募集。

著录项

  • 作者

    Neidhard-Doll, Amy Teresa.;

  • 作者单位

    Wright State University.;

  • 授予单位 Wright State University.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 247 p.
  • 总页数 247
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号