首页> 外文学位 >Structure and function of hyperpolarization activated cation nonselective HCN pacemaker channels.
【24h】

Structure and function of hyperpolarization activated cation nonselective HCN pacemaker channels.

机译:超极化激活阳离子非选择性HCN起搏器通道的结构和功能。

获取原文
获取原文并翻译 | 示例

摘要

The pacemaker channels have recently been identified at the molecular level by the cloning of the hyperpolarization-activated cation nonselective (HCN) gene family. These gene products generate non-specific cation currents (Ih) that underlie oscillatory electrical activities in brain and heart. In this thesis, I studied the structure and function of the HCN pacemaker channels.; I first tested the possibility of HCN1 and HCN2 subunit coassembly to form heteromultimers with unique properties. Coexpression of HCN1 and HCN2 yields Ih currents with novel voltage dependence, activation kinetics, and cAMP modulation, which cannot be reproduced by the simulated sums of independent populations of HCN1 and HCN2 homomers. This strongly suggests the formation of heteromeric channels with distinct properties. During this study, I also found that Ih is modulated by basal levels of cAMP in intact oocytes. Next, after studying a series of chimeric channels, I found that the cyclic nucleotide binding domain (CNBD) of the channel interacts with the transmembrane domain and the C-linker—a region linking the last transmembrane segment with the CNBD—to inhibit voltage gating. cAMP binding to the CNBD, meanwhile, relieves this inhibition due to an altered interaction between the CNBD and the C-linker. Finally, I characterized a novel mechanism for cAMP signaling in HCN channels based on allosteric coupling of voltage gating and cAMP binding. Due to this coupling, cAMP binds with much higher affinity to the open state of the channel than to the closed state. This allosteric model accounts for a slow component in HCN channel activation due to the slow binding of low levels of cAMP to open channels. A computer simulation of a thalamacortical relay neuron suggests that this allosteric model can explain thalamic spindling, which occurs during slow wave sleep. More generally, dynamic signaling through activity dependent changes in ligand affinity may be an important feature for a variety of channels dually gated by voltage and second messengers, such as Ca2+ activated BK channels, G protein modulated Ca 2+ channels, and cyclic nucleotide regulated HERG K+ channels.
机译:最近,通过克隆超极化激活的阳离子非选择性(HCN)基因家族,在分子水平上确定了起搏器通道。这些基因产物产生非特异性阳离子电流(I h ),这些电流构成大脑和心脏的振荡电活动的基础。本文研究了HCN起搏器通道的结构和功能。我首先测试了HCN1和HCN2亚基共同组装形成具有独特特性的异源多聚体的可能性。 HCN1和HCN2的共表达会产生具有新的电压依赖性,激活动力学和cAMP调节的I h 电流,而HCN1和HCN2同聚物的独立种群的模拟总和无法复制该电流。这强烈暗示了具有不同性质的异聚体通道的形成。在这项研究中,我还发现完整卵母细胞中cAMP的基础水平可调节I h 。接下来,在研究了一系列嵌合通道后,我发现通道的环状核苷酸结合结构域(CNBD)与跨膜结构域和C-接头(将最后一个跨膜区段与CNBD连接在一起的区域)相互作用,从而抑制了电压门控。同时,由于CNBD和C接头之间相互作用的改变,cAMP与CNBD的结合减轻了这种抑制作用。最后,我基于电压门控和cAMP结合的变构偶联,表征了HCN通道中cAMP信号传导的新机制。由于这种耦合,与通道的打开状态相比,cAMP与通道的打开状态的亲和力要高得多。由于低水平的cAMP与开放通道的缓慢结合,该变构模型解释了HCN通道激活中的缓慢组分。丘脑皮质中枢神经元的计算机模拟表明,这种变构模型可以解释在慢波睡眠期间发生的丘脑旋转。更普遍地讲,通过依赖于活性的配体亲和力变化来动态传递信号可能是电压和第二信使双重控制的多种通道的重要特征,例如Ca 2 + 激活的BK通道,G蛋白调节的Ca 2 + 通道,以及环状核苷酸调控的HERG K + 通道。

著录项

  • 作者

    Wang, Jing.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Biophysics General.; Biology Neuroscience.; Health Sciences Pharmacology.; Biology Cell.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 188 p.
  • 总页数 188
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物物理学;神经科学;药理学;细胞生物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号