首页> 外文学位 >Soil moisture estimation from soil spectral characteristics in a precision farming environment.
【24h】

Soil moisture estimation from soil spectral characteristics in a precision farming environment.

机译:根据精确耕作环境中的土壤光谱特征估算土壤湿度。

获取原文
获取原文并翻译 | 示例

摘要

Soil moisture is a critical component of numerous agricultural systems, including crop growth, and precision farming. Consequently, understanding how soil moisture varies across the field is important for planning and management of those systems. However, accurate, detailed maps of soil moisture are difficult to obtain from in situ measurements. This work addresses the variability of soil moisture, the impact of moisture variability on crop yield, and the potential of optical remote sensing for soil moisture monitoring.; Two fields were sampled for surface and near-surface soil moisture and reflectance throughout the growing season. These data were studied to estimate variability in soil moisture, to determine the relationship between moisture and corn yield, and to quantify the relationship between surface reflectance and surface moisture.; Analysis of the spatial structure of soil moisture revealed that the geospatial characteristics of the moisture patterns were similar from one date to another. While there was no strong correlation between moisture patterns and topographic indices, analysis indicated that plan curvature may be important for understanding surface moisture spatial variation. Temporal stability of moisture patterns was studied to identify optimal sampling points for field-average soil moisture. These points tended to be in areas that were neutral in aspect and plan curvature compared to the field average.; Investigation of the relationship between moisture and corn yield indicated that there may be useful information in early (roughly from germination to within two weeks of planting) surface soil moisture measurements for interpreting variation in crop yield.; Spectral reflectance data were analyzed in conjunction with surface moisture data to determine the nature of the relationship between the two. For one of the fields, the strongest relationship between reflectance and surface moisture was between 550 and 620 nm. For the other, the strongest relationship was around 945 nm. Finally, a combination of spectral data and limited moisture data was used to create moisture maps. Use of a cokriging technique generated more detailed soil moisture maps than the limited data alone. This method shows potential for development as part of a data fusion technique to generate moisture maps from a minimum of samples.
机译:土壤水分是许多农业系统(包括作物生长和精确农业)的重要组成部分。因此,了解土壤水分在整个田间如何变化对于规划和管理这些系统很重要。然而,难以从原位测量获得准确,详细的土壤水分图。这项工作解决了土壤水分的变化,水分变化对作物产量的影响以及光学遥感对土壤水分监测的潜力。在整个生长季节中,对两个田地进行了表面和近地土壤水分和反射率采样。研究了这些数据以估计土壤水分的变异性,确定水分与玉米产量之间的关系,以及量化表面反射率与表面水分之间的关​​系。对土壤水分空间结构的分析表明,一个日期到另一个日期,这些水分模式的地理空间特征是相似的。尽管水分模式与地形指数之间没有强相关性,但分析表明,平面曲率对于理解表面水分空间变化可能很重要。研究了湿度模式的时间稳定性,以确定田间平均土壤湿度的最佳采样点。与场平均值相比,这些点往往在纵横比和平面曲率处于中性的区域中。对水分与玉米产量之间关系的调查表明,在早期(大约从发芽到播种两周之内)地表土壤水分测量可能会提供有用的信息,以解释农作物产量的变化。将光谱反射率数据与表面水分数据一起进行分析,以确定两者之间关系的性质。对于其中一个领域,反射率和表面湿度之间的最强关系是在550至620 nm之间。另一方面,最强的关系是在945 nm附近。最后,结合光谱数据和有限的水分数据来创建水分图。与单独的有限数据相比,使用cokriging技术可以生成更详细的土壤湿度图。这种方法显示了作为数据融合技术一部分开发的潜力,该技术可以从最少的样品中生成水分图。

著录项

  • 作者

    Kaleita, Amy Leigh.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Agricultural.; Remote Sensing.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 166 p.
  • 总页数 166
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 农业工程;遥感技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号