首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Estimation of Soil Moisture Content from the Spectral Reflectance of Bare Soils in the 0.4–2.5 μm Domain
【2h】

Estimation of Soil Moisture Content from the Spectral Reflectance of Bare Soils in the 0.4–2.5 μm Domain

机译:从0.4–2.5μm范围内裸土的光谱反射率估算土壤含水量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This work aims to compare the performance of new methods to estimate the Soil Moisture Content (SMC) of bare soils from their spectral signatures in the reflective domain (0.4–2.5 μm) in comparison with widely used spectral indices like Normalized Soil Moisture Index (NSMI) and Water Index SOIL (WISOIL). Indeed, these reference spectral indices use wavelengths located in the water vapour absorption bands and their performance are thus very sensitive to the quality of the atmospheric compensation. To reduce these limitations, two new spectral indices are proposed which wavelengths are defined using the determination matrix tool by taking into account the atmospheric transmission: Normalized Index of Nswir domain for Smc estimatiOn from Linear correlation (NINSOL) and Normalized Index of Nswir domain for Smc estimatiOn from Non linear correlation (NINSON). These spectral indices are completed by two new methods based on the global shape of the soil spectral signatures. These methods are the Inverse Soil semi-Empirical Reflectance model (ISER), using the inversion of an existing empirical soil model simulating the soil spectral reflectance according to soil moisture content for a given soil class, and the convex envelope model, linking the area between the envelope and the spectral signature to the SMC. All these methods are compared using a reference database built with 32 soil samples and composed of 190 spectral signatures with five or six soil moisture contents. Half of the database is used for the calibration stage and the remaining to evaluate the performance of the SMC estimation methods. The results show that the four new methods lead to similar or better performance than the one obtained by the reference indices. The RMSE is ranging from 3.8% to 6.2% and the coefficient of determination R2 varies between 0.74 and 0.91 with the best performance obtained with the ISER model. In a second step, simulated spectral radiances at the sensor level are used to analyse the sensitivity of these methods to the sensor spectral resolution and the water vapour content knowledge. The spectral signatures of the database are then used to simulate the signal at the top of atmosphere with a radiative transfer model and to compute the integrated incident signal representing the spectral radiance measurements of the HYMAP airborne hyperspectral instrument. The sensor radiances are then corrected from the atmosphere by an atmospheric compensation tool to retrieve the surface reflectances. The SMC estimation methods are then applied on the retrieve spectral reflectances. The adaptation of the spectral index wavelengths to the HyMap sensor spectral bands and the application of the convex envelope and ISER models to boarder spectral bands lead to an error on the SMC estimation. The best performance is then obtained with the ISER model (RMSE of 2.9% and R2 of 0.96) while the four other methods lead to quite similar RMSE (from 6.4% to 7.8%) and R2 (between 0.79 and 0.83) values. In the atmosphere compensation processing, an error on the water vapour content is introduced. The most robust methods to water vapour content variations are WISOIL, NINSON, NINSOL and ISER model. The convex envelope model and NSMI index require an accurate estimation of the water vapour content in the atmosphere.
机译:这项工作的目的是与通过广泛使用的光谱指数(如归一化土壤水分指数(NSMI))相比,比较从反射区域(0.4-2.5μm)的光谱特征估算裸土的土壤水分含量(SMC)的新方法的性能。 )和水指数土壤(WISOIL)。实际上,这些参考光谱指数使用位于水蒸气吸收带中的波长,因此它们的性能对大气补偿的质量非常敏感。为了减少这些限制,提出了两个新的光谱指数,这些波长使用测定矩阵工具通过考虑大气传输来定义:线性相关性的Nswir域的归一化指数(NINSOL)和Smc的Nswir域的归一化指数根据非线性相关性(NINSON)进行估算。这些光谱指数通过两种基于土壤光谱特征整体形状的新方法完成。这些方法是反向土壤半经验反射率模型(ISER),它使用现有经验性土壤模型的反演,该模型根据给定土壤类别的土壤含水量模拟土壤光谱反射率,而凸包络模型则将两者之间的面积联系起来信封和SMC的光谱特征。使用参考数据库对所有这些方法进行比较,该参考数据库由32个土壤样品构成,并由190个具有5或6个土壤水分含量的光谱特征组成。数据库的一半用于校准阶段,其余部分用于评估SMC估算方法的性能。结果表明,这四种新方法与通过参考指标获得的方法相比,具有相似或更好的性能。 RMSE的范围为3.8%至6.2%,测定系数R 2 在0.74至0.91之间变化,具有ISER模型获得的最佳性能。第二步,使用传感器级别的模拟光谱辐射度分析这些方法对传感器光谱分辨率和水汽含量知识的敏感性。然后,将数据库的光谱特征用于通过辐射传递模型模拟大气顶部的信号,并计算代表HYMAP机载高光谱仪器的光谱辐射度测量值的积分入射信号。然后,通过大气补偿工具从大气中校正传感器辐射,以获取表面反射率。然后将SMC估计方法应用于检索到的光谱反射率。光谱索引波长对HyMap传感器光谱带的适应性以及凸包络和ISER模型在边界光谱带上的应用会导致SMC估计误差。然后,使用ISER模型可获得最佳性能(RMSE为2.9%,R 2 为0.96),而其他四种方法得出的RMSE则非常相似(从6.4%到7.8%),R 2 (介于0.79和0.83之间)。在大气补偿处理中,引入了水蒸气含量的误差。对水蒸气含量变化最有效的方法是WISOIL,NINSON,NINSOL和ISER模型。凸包络模型和NSMI指数要求准确估算大气中的水蒸气含量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号