首页> 外文学位 >Mechanisms of environmental chemical-induced apoptosis in dopaminergic cells: Critical roles of protein kinase C-delta and relevance to Parkinson's disease.
【24h】

Mechanisms of environmental chemical-induced apoptosis in dopaminergic cells: Critical roles of protein kinase C-delta and relevance to Parkinson's disease.

机译:环境化学诱导的多巴胺能细胞凋亡的机制:蛋白激酶C-δ的关键作用以及与帕金森氏病的相关性。

获取原文
获取原文并翻译 | 示例

摘要

We have investigated the dopaminergic toxicity and cell death signaling mechanisms of the potential environmental risk factors, dieldrin, methylcyclopentadienyl manganese tricarbonyl (MMT), and manganese, for Parkinson's disease (PD) in the dopaminergic rat pheochromocytoma (PC12) and rat mesencephalic (1RB3AN27 or N27) cell lines. Dopaminergic cells were more susceptible to both dieldrin and MMT toxicity as compared to non-dopaminergic cells, such as M213–20 (rat striatal GABAergic) cells, α-TC (rat clonal pancreatic) cells, and HCN-2 (human cortical neuronal) cells. Acute exposure to dieldrin or MMT altered dopamine catabolism, as observed by an increase in DOPAC formation and dopamine release, and subsequent decrease in dopamine content. Also, a rapid generation of reactive oxygen species (ROS) was observed within 5 min of dieldrin (30–300 μM) or MMT (30–200 μM) exposure. This ROS generation was partially blocked by α-methyl-p-tyrosine or selegiline, inhibitors of tyrosine hydroxylase or monoamine oxidase-B, respectively, indicating that the presence of dopamine and disruption of dopamine catabolism and degradation may serve as an additional source of ROS. Dieldrin, MMT or manganese treatment in dopaminergic cells triggered apoptotic cell death process, as measured by mitochondrial depolarization, release of cytochrome c, and caspase-9 and caspase-3 activation. These initial pro-apoptotic processes were almost completely blocked by the over-expression of the anti-apoptotic protein, Bcl-2. Thus, one of the primary cellular targets of dieldrin, MMT, and manganese could be the mitochondria; specifically, mitochondrial function was inhibited to initiate the apoptotic cascade. Interestingly, we observed proteolytic cleavage of the novel protein kinase Cδ (PKCδ) following dieldrin, MMT, and manganese exposure. PKCδ (72–74 kDa) was cleaved into the regulatory (42 kDa) and catalytic (38 kDa) subunits by caspase-3, resulting in increased kinase activity. Other PKC family proteins, including PKCα, PKCβII, and PKCζ, were not cleaved during dieldrin or MMT exposure, indicating that the proteolytic cleavage of PKCδ was isozyme specific. Both pharmacological and genetic modulation of PKCδ resulted in attenuation of toxicant-induced DNA fragmentation and apoptosis, suggesting that PKCδ plays an important role in the execution of apoptosis. Additional experimental results indicate that PKCδ amplifies the caspase cascade by positive feedback activation during the neurotoxic insult. Another regulatory role of PKCδ was observed during dieldrin or MMT treatment; translocation of PKCδ into mitochondrial membranes was increased, and it was followed by release of pro-apoptotic molecules such as cytochrome c and Smac, and time-dependent activation of caspase-9 and caspase-3. Down-regulation of PKCδ by TPA or pretreatment with rottlerin significantly blocked dieldrin-induced cytochrome c release, yet rottlerin did not inhibit translocation of PKCδ into mitochondria. These results strongly support that PKCδ modulates mitochondrial function and triggers the initiation process of apoptosis. Delivery of recombinant active PKCδ into dopaminergic cells mimicked the effect of dieldrin-induced PKCδ translocation into mitochondria, indicating that PKCδ plays a critical role not only in the execution process, but also in the initiation of apoptosis. Taken together, these experimental results suggest that environmental neurotoxic agents (dieldrin, MMT, and manganese) promote dopaminergic degeneration by sequentially activating the following cellular events: (i) generation of oxidative stress to initiate the apoptotic cascade, (ii) induction of apoptotic cell death by caspase-3 dependent proteolytic activation of PKCδ, and (iii) amplification of the caspase cascade by posi
机译:我们已经研究了多巴胺能大鼠嗜铬细胞瘤(PC12)和大鼠中脑性(1RB <1)的潜在环境危险因素,狄氏剂,甲基环戊二烯基三羰基锰(MMT)和锰对帕金森氏病(PD)的多巴胺能毒性和细胞死亡信号传导机制。 sub> 3 AN 27 或N27)细胞系。与非多巴胺能细胞相比,多巴胺能细胞对狄氏剂和MMT毒性都更敏感,例如M213-20(大鼠纹状体GABA能细胞),α-TC(大鼠克隆胰腺)细胞和HCN-2(人皮层神经元)细胞。急性暴露于狄氏剂或MMT会改变多巴胺的分解代谢,这可以通过增加DOPAC的形成和多巴胺的释放以及随后降低多巴胺的含量来观察。同样,在狄德林(30–300μM)或MMT(30–200μM)暴露的5分钟内,观察到活性氧(ROS)的快速生成。 ROS的产生分别被酪氨酸羟化酶或单胺氧化酶-B的抑制剂α-甲基-对-酪氨酸或司来吉兰部分阻止,表明多巴胺的存在以及对多巴胺分解代谢和降解的破坏可能是ROS的另一个来源。多巴胺能细胞中的狄氏剂,MMT或锰处理可触发凋亡性细胞死亡过程,可通过线粒体去极化,细胞色素c的释放以及caspase-9和caspase-3活化来测量。这些最初的促凋亡过程几乎被抗凋亡蛋白Bcl-2的过度表达所阻断。因此,狄氏剂,MMT和锰的主要细胞靶标之一可能是线粒体。具体而言,线粒体功能受到抑制,从而启动了凋亡级联反应。有趣的是,我们观察到狄氏剂,MMT和锰暴露后,新型蛋白激酶Cδ(PKCδ)的蛋白水解裂解。 PKCδ(72–74 kDa)被caspase-3裂解为调节性(42 kDa)和催化性(38 kDa)亚基,从而导致激酶活性增强。在狄氏剂或MMT暴露期间,其他PKC家族蛋白(包括PKCα,PKCβII和PKCζ)没有被切割,表明PKCδ的蛋白水解切割是同功酶特异性的。 PKCδ的药理和遗传调控均导致毒物诱导的DNA片段化和细胞凋亡的减弱,这表明PKCδ在细胞凋亡的执行中起着重要作用。其他实验结果表明,PKCδ在神经毒性损伤期间通过正反馈激活放大了胱天蛋白酶级联反应。在狄氏剂或MMT处理过程中观察到PKCδ的另一种调节作用。 PKCδ进入线粒体膜的转运增加,随后释放促凋亡分子(例如细胞色素c和Smac)以及caspase-9和caspase-3的时间依赖性激活。通过TPA下调PKCδ或用rottlerin预处理可显着阻断狄德林诱导的细胞色素c释放,但rottlerin不会抑制PKCδ进入线粒体。这些结果强烈支持PKCδ调节线粒体功能并触发细胞凋亡的起始过程。重组活性PKCδ进入多巴胺能细胞的传递模仿了狄氏剂诱导的PKCδ易位到线粒体中的作用,这表明PKCδ不仅在执行过程中起关键作用,而且在凋亡的启动中也起着关键作用。总而言之,这些实验结果表明环境神经毒性剂(狄氏剂,MMT和锰)通过依次激活以下细胞事件来促进多巴胺能变性:(i)氧化应激的产生以启动凋亡级联反应,(ii)诱导凋亡细胞caspase-3依赖性蛋白水解激活PKCδ导致死亡,以及(iii)posi扩增caspase级联反应

著录项

  • 作者

    Kitazawa, Masashi.;

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Health Sciences Toxicology.; Biology Neuroscience.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 341 p.
  • 总页数 341
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 毒物学(毒理学);神经科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号