首页> 外文学位 >Implementation and Validation of an Anisotropic Plasticity Model for Clay and a Two-Scale Micropolar Constitutive Model for Sand.
【24h】

Implementation and Validation of an Anisotropic Plasticity Model for Clay and a Two-Scale Micropolar Constitutive Model for Sand.

机译:黏土各向异性塑性模型和砂土两尺度微极本构模型的实现与验证。

获取原文
获取原文并翻译 | 示例

摘要

As a multi-phase material, soil exhibits highly nonlinear, anisotropic, and inelastic behavior. While it may be impractical for one constitutive model to address all features of the soil behavior, one can identify the essential aspects of the soil's stress-strainstrength response for a particular class of problems and develop a suitable constitutive model that captures those aspects. Here, attention is given to two important features of the soil stress-strain-strength behavior: anisotropy and post-failure response. An anisotropic soil plasticity model is implemented to investigate the significance of initial and induced anisotropy on the response of geo-structures founded on cohesive soils. The model is shown to produce realistic responses for a variety of over-consolidation ratios. Moreover, the performance of the model is assessed in a boundary value problem in which a cohesive soil is subjected to the weight of a newly constructed soil embankment. Significance of incorporating anisotropy is clearly demonstrated by comparing the results of the simulation using the model with those obtained by using an isotropic plasticity model.;To investigate post-failure response of soils, the issue of strain localization in geostructures is considered. Post-failure analysis of geo-structures using numerical techniques such as mesh-based or mesh-free methods is often faced with convergence issues which may, at times, lead to incorrect failure mechanisms. This is due to the fact that majority of existing constitutive models are formulated within the framework of classical continuum mechanics that leads to ill-posed governing equations at the onset of localization. To overcome this challenge, a critical state two-surface plasticity model is extended to incorporate the micro-structural mechanisms that become significant within the shear band. The extended model is implemented to study the strain localization of granular soils in drained and undrained conditions. It is demonstrated that the extended model is capable of capturing salient features of soil behavior in pre- and post-failure regimes. The effects of soil particle size, initial density and confining pressure on the thickness and orientation of shear band are investigated and compared with the observed behavior of soils.
机译:作为多相材料,土壤表现出高度的非线性,各向异性和非弹性行为。尽管一个本构模型无法解决土壤行为的所有特征,但可以针对特定类别的问题识别土壤应力-应变-强度响应的基本方面,并开发出一种能够捕捉这些方面的合适本构模型。在这里,要注意土壤应力-应变-强度行为的两个重要特征:各向异性和破坏后的响应。运用各向异性土壤可塑性模型研究初始各向异性和诱导各向异性对基于粘性土壤的地质结构响应的重要性。该模型显示出可以针对各种超固结比率产生现实的响应。此外,在边界值问题中评估了模型的性能,在该问题中,粘性土承受了新建土堤的重量。通过将使用该模型的模拟结果与使用各向同性可塑性模型获得的结果进行比较,清楚地表明了引入各向异性的重要性。为了研究土壤的破坏后响应,考虑了土工结构中的应变局部化问题。使用数值技术(例如基于网格或无网格的方法)对地质结构进行失效后分析通常会遇到收敛性问题,有时可能会导致错误的失效机制。这是由于以下事实:大多数现有的本构模型是在经典连续体力学的框架内制定的,从而导致局部化开始时不适定的控制方程式。为了克服这一挑战,扩展了临界状态两面可塑性模型,以纳入在剪切带内变得重要的微观结构机制。实施扩展模型以研究排水和不排水条件下粒状土壤的应变局部化。结果表明,扩展模型能够捕获故障前后的土壤行为特征。研究了土壤粒径,初始密度和围压对剪切带厚度和方向的影响,并与观察到的土壤行为进行了比较。

著录项

  • 作者

    Yonten, Karma.;

  • 作者单位

    The George Washington University.;

  • 授予单位 The George Washington University.;
  • 学科 Applied Mechanics.;Engineering Materials Science.;Engineering Civil.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 295 p.
  • 总页数 295
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号