首页> 美国卫生研究院文献>other >Validation and application of an intervertebral disc finite element model utilizing independently constructed tissue-level constitutive formulations that are nonlinear anisotropic and time-dependent
【2h】

Validation and application of an intervertebral disc finite element model utilizing independently constructed tissue-level constitutive formulations that are nonlinear anisotropic and time-dependent

机译:椎间盘有限元模型的验证和应用该模型使用独立构造的非线性各向异性和时间相关的组织水平本构关系

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Finite element (FE) models are advantageous in the study of intervertebral disc mechanics as the stress–strain distributions can be determined throughout the tissue and the applied loading and material properties can be controlled and modified. However, the complicated nature of the disc presents a challenge in developing an accurate and predictive disc model, which has led to limitations in FE geometry, material constitutive models and properties, and model validation. The objective of this study was to develop a new FE model of the intervertebral disc, to validate the model’s nonlinear and time-dependent responses without tuning or calibration, and to evaluate the effect of changes in nucleus pulposus (NP), cartilaginous endplate (CEP), and annulus fibrosus (AF) material properties on the disc mechanical response. The new FE disc model utilized an analytically-based geometry. The model was created from the mean shape of human L4/L5 discs, measured from high-resolution 3D MR images and averaged using signed distance functions. Structural hyperelastic constitutive models were used in conjunction with biphasic-swelling theory to obtain material properties from recent tissue tests in confined compression and uniaxial tension. The FE disc model predictions fit within the experimental range (mean ± 95% confidence interval) of the disc’s nonlinear response for compressive slow loading ramp, creep, and stress-relaxation simulations. Changes in NP and CEP properties affected the neutral-zone displacement but had little effect on the final stiffness during slow-ramp compression loading. These results highlight the need to validate FE models using the disc’s full nonlinear response in multiple loading scenarios.
机译:有限元(FE)模型在椎间盘力学研究中具有优势,因为可以确定整个组织的应力-应变分布,并且可以控制和修改所施加的载荷和材料特性。但是,碟片的复杂性质给开发精确且可预测的碟片模型带来了挑战,这导致了有限元几何,材料本构模型和特性以及模型验证受到限制。这项研究的目的是开发一种新的椎间盘有限元模型,无需调整或校准即可验证模型的非线性和时间依赖性响应,并评估髓核(NP),软骨终板(CEP)改变的影响)和纤维环(AF)的材料特性对椎间盘的机械反应。新的FE圆盘模型利用了基于分析的几何形状。该模型是根据人类L4 / L5光盘的平均形状创建的,该形状是根据高分辨率3D MR图像进行测量的,并使用有符号距离函数进行平均。结构超弹性本构模型与双相膨胀理论结合使用,可以从最近的组织测试中获得有限压缩和单轴拉伸中的材料特性。 FE圆盘模型的预测值适合圆盘非线性响应的实验范围(均值±95%置信区间),用于压缩缓慢加载的斜率,蠕变和应力松弛模拟。 NP和CEP特性的变化会影响中性区位移,但对缓升压缩加载期间的最终刚度影响很小。这些结果突出表明,需要在多种加载情况下使用圆盘的完全非线性响应来验证FE模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号