首页> 外文学位 >Adaptive and neuroadaptive control for nonnegative and compartmental dynamical systems.
【24h】

Adaptive and neuroadaptive control for nonnegative and compartmental dynamical systems.

机译:非负和隔室动力系统的自适应和神经自适应控制。

获取原文
获取原文并翻译 | 示例

摘要

Neural networks have been extensively used for adaptive system identification as well as adaptive and neuroadaptive control of highly uncertain systems. The goal of adaptive and neuroadaptive control is to achieve system performance without excessive reliance on system models. To improve robustness and the speed of adaptation of adaptive and neuroadaptive controllers several controller architectures have been proposed in the literature. In this dissertation, we develop a new neuroadaptive control architecture for nonlinear uncertain dynamical systems. The proposed framework involves a novel controller architecture with additional terms in the update laws that are constructed using a moving window of the integrated system uncertainty. These terms can be used to identify the ideal system weights of the neural network as well as effectively suppress system uncertainty. Linear and nonlinear parameterizations of the system uncertainty are considered and state and output feedback neuroadaptive controllers are developed. Furthermore, we extend the developed framework to discrete-time dynamical systems. To illustrate the efficacy of the proposed approach we apply our results to an aircraft model with wing rock dynamics, a spacecraft model with unknown moment of inertia, and an unmanned combat aerial vehicle undergoing actuator failures, and compare our results with standard neuroadaptive control methods.;Nonnegative systems are essential in capturing the behavior of a wide range of dynamical systems involving dynamic states whose values are nonnegative. A sub-class of nonnegative dynamical systems are compartmental systems. These systems are derived from mass and energy balance considerations and are comprised of homogeneous interconnected microscopic subsystems or compartments which exchange variable quantities of material via intercompartmental flow laws. In this dissertation, we develop direct adaptive and neuroadaptive control framework for stabilization, disturbance rejection and noise suppression for nonnegative and compartmental dynamical systems with noise and exogenous system disturbances. We then use the developed framework to control the infusion of the anesthetic drug propofol for maintaining a desired constant level of depth of anesthesia for surgery in the face of continuing hemorrhage and hemodilution.;Critical care patients, whether undergoing surgery or recovering in intensive care units, require drug administration to regulate physiological variables such as blood pressure, cardiac output, heart rate, and degree of consciousness. The rate of infusion of each administered drug is critical, requiring constant monitoring and frequent adjustments. In this dissertation, we develop a neuroadaptive output feedback control framework for nonlinear uncertain nonnegative and compartmental systems with nonnegative control inputs and noisy measurements. The proposed framework is Lyapunov-based and guarantees ultimate boundedness of the error signals. In addition, the neuroadaptive controller guarantees that the physical system states remain in the nonnegative orthant of the state space. Finally, the developed approach is used to control the infusion of the anesthetic drug propofol for maintaining a desired constant level of depth of anesthesia for surgery in the face of noisy electroencephalographic (EEG) measurements. Clinical trials demonstrate excellent regulation of unconsciousness allowing for a safe and effective administration of the anesthetic agent propofol.;Furthermore, a neuroadaptive output feedback control architecture for nonlinear nonnegative dynamical systems with input amplitude and integral constraints is developed. Specifically, the neuroadaptive controller guarantees that the imposed amplitude and integral input constraints are satisfied and the physical system states remain in the nonnegative orthant of the state space. The proposed approach is used to control the infusion of the anesthetic drug propofol for maintaining a desired constant level of depth of anesthesia for noncardiac surgery in the face of infusion rate constraints and a drug dosing constraint over a specified period.;In addition, the aforementioned control architecture is used to control lung volume and minute ventilation with input pressure constraints that also accounts for spontaneous breathing by the patient. Specifically, we develop a pressure- and work-limited neuroadaptive controller for mechanical ventilation based on a nonlinear multi-compartmental lung model. The control framework does not rely on any averaged data and is designed to automatically adjust the input pressure to the patient's physiological characteristics capturing lung resistance and compliance modeling uncertainty. Moreover, the controller accounts for input pressure constraints as well as work of breathing constraints. The effect of spontaneous breathing is incorporated within the lung model and the control framework.;Finally, a neural network hybrid adaptive control framework for nonlinear uncertain hybrid dynamical systems is developed. The proposed hybrid adaptive control framework is Lyapunov-based and guarantees partial asymptotic stability of the closed-loop hybrid system; that is, asymptotic stability with respect to part of the closed-loop system states associated with the hybrid plant states. A numerical example is provided to demonstrate the efficacy of the proposed hybrid adaptive stabilization approach.
机译:神经网络已广泛用于高度不确定性系统的自适应系统识别以及自适应和神经自适应控制。自适应和神经自适应控制的目标是在不过度依赖系统模型的情况下实现系统性能。为了提高鲁棒性和自适应和神经自适应控制器的适应速度,文献中已经提出了几种控制器架构。本文针对非线性不确定动力系统,开发了一种新型的神经自适应控制体系。所提出的框架涉及一种新颖的控制器架构,该架构具有使用集成系统不确定性的移动窗口构造的更新定律中的其他术语。这些术语可用于确定神经网络的理想系统权重,并有效抑制系统不确定性。考虑了系统不确定性的线性和非线性参数化,并开发了状态和输出反馈神经自适应控制器。此外,我们将开发的框架扩展到离散时间动力系统。为了说明所提出方法的有效性,我们将我们的结果应用于具有机翼岩石动力学的飞机模型,具有未知惯性矩的航天器模型以及经历执行器故障的无人战斗飞机,并将我们的结果与标准的神经自适应控制方法进行比较。 ;负性系统对于捕获范围广泛的动力学系统的行为至关重要,这些动力学系统涉及非负值的动态状态。非负动力系统的一个子类是隔室系统。这些系统是基于质量和能量平衡的考虑而得出的,由均匀互连的微观子系统或隔室组成,这些子系统或隔室通过隔室之间的流动定律交换可变数量的材料。本文针对具有噪声和外源性系统扰动的非负隔室动力系统,建立了直接的自适应和神经自适应控制框架,用于稳定,扰动抑制和噪声抑制。然后,我们使用已开发的框架来控制麻醉药丙泊酚的输注,以在连续不断的出血和血液稀释的情况下维持手术所需的恒定麻醉深度。;重症监护患者,无论是进行手术还是在重症监护病房康复,需要服用药物来调节生理变量,例如血压,心输出量,心率和意识程度。每种给药药物的输注速度至关重要,需要不断监测和频繁调整。在本文中,我们开发了一种具有非负控制输入和噪声测量的非线性不确定非负和隔室系统的神经自适应输出反馈控制框架。所提出的框架是基于Lyapunov的,并保证了误差信号的最终有界性。此外,神经自适应控制器可确保物理系统状态保留在状态空间的非负正态中。最后,在面对嘈杂的脑电图(EEG)测量时,已开发的方法用于控制麻醉药异丙酚的输注,以维持手术所需的麻醉深度恒定水平。临床试验表明,对昏迷的良好调节可安全有效地施用麻醉药丙泊酚。此外,针对具有输入幅度和积分约束的非线性非负动力系统,开发了一种神经适应性输出反馈控制架构。具体而言,神经自适应控制器可确保满足施加的振幅和积分输入约束,并且物理系统状态仍保留在状态空间的非负正态中。所提出的方法用于控制麻醉药丙泊酚的输注,以在特定时期内面对输注速率限制和药物剂量限制时,为非心脏手术维持所需的恒定麻醉深度水平。控制结构用于控制肺部容积和微小通气,并具有输入压力限制,这也说明了患者的自发呼吸。具体来说,我们开发了基于非线性多室肺模型的机械通气的压力和工作受限神经自适应控制器。该控制框架不依赖任何平均数据,并旨在自动调整输入压力以适应患者的生理特征,从而捕获肺阻力和依从性建模不确定性。此外,控制器考虑输入压力约束以及呼吸约束。自发呼吸的影响被纳入肺部模型和控制框架。建立了非线性不确定混合动力系统的神经网络混合自适应控制框架。所提出的混合自适应控制框架是基于Lyapunov的,并且保证了闭环混合系统的部分渐近稳定性。也就是说,相对于与混合工厂状态相关的部分闭环系统状态的渐近稳定性。提供了一个数值示例来证明所提出的混合自适应稳定方法的有效性。

著录项

  • 作者

    Volyanskyy, Kostyantyn Y.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Aerospace.;Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 249 p.
  • 总页数 249
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号