首页> 外文学位 >Constraint and ductile tearing effects on the cleavage fracture of ferritic steel.
【24h】

Constraint and ductile tearing effects on the cleavage fracture of ferritic steel.

机译:约束和韧性撕裂对铁素体钢解理断裂的影响。

获取原文
获取原文并翻译 | 示例

摘要

This study couples the ASTM E1921 procedure to characterize the ductile-tobrittle toughness of ferritic steels in terms of KJc (or Jc) values with the Weibull stress model, i.e ., the "local approach" for fracture at the micro-scale. The E1921 procedures assume that uniform, small-scale yielding (SSY) conditions exist at fracture along the full crack-front. Plasticity induced constraint loss (crack-front triaxiality) frequently invalidates these assumptions. The non-dimensional functions, g(M = bsigma 0/J), derived from application of the Weibull stress approach for a specific specimen and material, describes the evolution of constraint loss effects on the fracture toughness relative to a plane-strain, SSY reference condition. For specific materials, cleavage fracture assessments employing the Weibull stress model depend on the calibration of several parameters. This work proposes that the Weibull stress scale parameter, sigma u, increases with temperature to reflect the increasing microscale toughness of ferritic steels caused by local events that include plastic shielding of microcracks, microcrack blunting, and microcrack arrest. The Weibull modulus, m, then characterizes the temperature invariant, random distribution of microcrack sizes in the material. Direct calibration of sigma u values at temperatures over the DBT region requires extensive sets of fracture toughness values. A more practical approach developed here utilizes the so-called Master Curve standardized in ASTM Test Method E1921-02 to provide the needed temperature vs. toughness dependence. Over the mid-to-upper region of the DBT, the brittle transgranular cleavage and ductile tearing are competing failure mechanisms in ferritic steel. At metallurgical scales (50mum), the formation and growth of the voids driving ductile crack extension likely alter the local stress fields acting on the smaller inclusions that trigger cleavage fracture. Here we study the effects of void growth on cleavage fracture by modeling discrete cylindrical voids lying on the crack plane ahead of the crack tip within a small-scale yielding (SSY) boundary layer model. We develop a new non-dimensional function, h( J), to represent the stress concentration effects on the Weibull stress in a convenient framework (J= J/Dsigma 0 denotes a non-dimensional loading for SSY analyses).
机译:这项研究结合了ASTM E1921程序,以Weibull应力模型,用KJc(或Jc)值来表征铁素体钢的延性-脆性韧性,即在微观范围内断裂的“局部方法”。 E1921程序假定在沿整个裂纹前沿的裂缝处存在均匀的小规模屈服(SSY)条件。可塑性引起的约束损失(裂纹前三轴性)经常使这些假设无效。无量纲函数g(M = bsigma 0 / J),源自对特定样品和材料应用威布尔应力法得出的结果,它描述了相对于平面应变SSY的约束损耗对断裂韧性的影响演化参考条件。对于特定材料,采用Weibull应力模型的乳沟断裂评估取决于几个参数的校准。这项工作提出,威布尔应力尺度参数σu随着温度的升高而增加,以反映由局部事件(包括微裂纹的塑料屏蔽,微裂纹钝化和微裂纹停止)引起的铁素体钢的微尺度韧性增加。然后,威布尔模量m表征了材料中微裂纹尺寸的温度不变,随机分布。在DBT区域温度范围内直接校准σu值需要大量的断裂韧性值。这里开发的一种更实用的方法是利用ASTM测试方法E1921-02中标准化的所谓的主曲线来提供所需的温度对韧性的依赖性。在DBT的中上区域,脆性的穿晶断裂和韧性撕裂是铁素体钢中相互竞争的破坏机制。在冶金规模(<50μm)下,驱动韧性裂纹扩展的空洞的形成和增长可能会改变作用于较小夹杂物上的局部应力场,从而触发劈裂。在这里,我们通过在小规模屈服(SSY)边界层模型中对位于裂纹尖端之前的裂纹平面上的离散圆柱状空隙进行建模,研究空隙生长对劈裂的影响。我们开发了一个新的无量纲函数h(J),以在方便的框架中表示应力集中对Weibull应力的影响(J = J / Dsigma 0表示SSY分析的无量纲负荷)。

著录项

  • 作者

    Petti, Jason Paul.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Civil.; Engineering Mechanical.; Applied Mechanics.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 163 p.
  • 总页数 163
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;机械、仪表工业;应用力学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号