首页> 外文学位 >Temperature and precipitation controls over soil, leaf and ecosystem level carbon dioxide flux along a woody plant encroachment gradient .
【24h】

Temperature and precipitation controls over soil, leaf and ecosystem level carbon dioxide flux along a woody plant encroachment gradient .

机译:木本植物入侵梯度下土壤,叶片和生态系统水平二氧化碳通量的温度和降水控制。

获取原文
获取原文并翻译 | 示例

摘要

Woody plant encroachment (WPE) into historic grasslands not only alters ecosystem structure but also yields a mosaic of vegetative growth-forms that differ in their inherent physiological capacities and physical attributes. C3 plants tend to have a relatively broad range of temperature function but at the expensive of a lower optimum rate of photosynthesis. In contrast, C4 grasses have a greater capacity for maximum uptake but across a relatively narrow range of temperatures. In considering which of these functional groups will outcompete the other within these regions undergoing WPE, one must account not only for these leaf physiological traits, but also the growth form induced differences in rooting depth, and therefore, potential access to deeper subsurface water. Laid upon these competitive interactions is an ever-changing environment, which for the semiarid southwestern US is predicted to become progressively warmer and characterized by highly variable precipitation with longer interstorm periods. In addition to aboveground changes in CO2 assimilation, WPE influences soil nutrient, water, and carbon cycling.;The objectives of this dissertation were to quantify: (1) the influence that temperature and available soil moisture have on regulating soil respiratory efflux within the microhabitats that results from WPE to estimate the influence this vegetative change will have on ecosystem CO2 efflux; (2) the sensitivity of CO2 uptake within grassland and woodland ecosystems to temperature and precipitation input in an effort to characterize how WPE might influence regional carbon and water balance; and (3) the role access to stable groundwater has in regulating the temperature sensitivity of ecosystems and their component fluxes.;Major findings and contributions of this research include illustrating seasonal patterns of soil respiration within the microhabitats that result from WPE, such that an analysis of the relative contributions of these different components could be made. We found that soil respiration was not only consistently greater under mesquites, but that the relative contributions of these microhabitats varied significantly throughout the year, the duration of soil respiration after each rain was habitat-specific, and that the relationship between soil respiration and temperature followed a hysteretic pattern rather than a linear function (Appendix A). We found that a woodland ecosystem demonstrated a lower temperature sensitivity than a grassland across all seasonal periods of varying soil moisture availability, and that by maintaining physiological function across a wider range of temperatures throughout periods of limited precipitation, C3 mesquites were acquiring large amounts of carbon while C 4 grasses were limited to functioning within a narrower range of temperatures (Appendix B). Finally, we found that having a connectivity to stable groundwater decoupled leaf and ecosystem scale temperature sensitivities relative to comparable sites lacking such access. Access to groundwater not only resulted in the temperature sensitivity of a riparian shrubland being nearly half that of the upland site throughout all seasonal periods, but also actual rates of net ecosystem productivity and leaf level rates of photosynthesis being dramatically enhanced (Appendix C).
机译:木本植物入侵(WPE)进入历史悠久的草原,不仅改变了生态系统的结构,而且还产生了营养生长形式的镶嵌图,这些生长形式的内在生理能力和物理属性不同。 C3植物倾向于具有相对宽范围的温度功能,但是代价是光合作用的最佳速率较低。相反,C4草具有更大的最大吸收能力,但在相对狭窄的温度范围内。在考虑这些功能组中的哪个将胜过接受WPE的这些区域中的另一个时,一个功能组不仅必须考虑这些叶片的生理特性,而且还必须考虑生长形式引起的生根深度差异,因此,有可能获取更深的地下水。这些竞争性相互作用的基础是不断变化的环境,对于美国西南部半干旱地区,预计该环境将逐渐变暖,其特点是降水量多变且暴风雨周期较长。除了地上二氧化碳的吸收变化外,WPE还影响土壤养分,水和碳循环。本论文的目的是量化:(1)温度和有效土壤水分对调节微生境中土壤呼吸通量的影响。 WPE得出的结果,用于估算这种营养变化将对生态系统二氧化碳排放产生的影响; (2)草原和林地生态系统中二氧化碳吸收对温度和降水输入的敏感性,以表征WPE如何影响区域碳水平衡; (3)获得稳定的地下水在调节生态系统的温度敏感性及其组成通量方面的作用。该研究的主要发现和贡献包括,说明了WPE在微生境中土壤呼吸的季节性模式,从而进行了分析。可以做出这些不同组成部分的相对贡献。我们发现,中耕季不仅土壤呼吸作用持续增强,而且这些微生境的相对贡献全年变化很大,每次降雨后土壤呼吸作用的持续时间都是特定于栖息地的,并且土壤呼吸作用与温度之间的关系如下滞后模式而不是线性函数(附录A)。我们发现,在土壤水分供应变化的所有季节中,林地生态系统对草地的温度敏感性均低于草地,并且通过在有限的降雨期间在更宽的温度范围内维持生理功能,C3豆科灌木林正在吸收大量碳。而C 4草只能在较窄的温​​度范围内发挥作用(附录B)。最后,我们发现相对于缺乏这种途径的可比较地点而言,与稳定的地下水解耦的叶片和生态系统规模的温度敏感性具有连通性。在整个季节中,获取地下水不仅导致河岸灌木丛的温度敏感性几乎是旱地的一半,而且显着提高了实际生态系统净生产率和光合作用的叶面速率(附录C)。

著录项

  • 作者

    Barron-Gafford, Greg Alan.;

  • 作者单位

    The University of Arizona.;

  • 授予单位 The University of Arizona.;
  • 学科 Biology Ecology.;Biology Plant Physiology.;Biogeochemistry.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 181 p.
  • 总页数 181
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号