首页> 外文学位 >Real-time self-calibration and geometry error measurement in nm level multi-axis precision machines based on multi X-Y encoder integration.
【24h】

Real-time self-calibration and geometry error measurement in nm level multi-axis precision machines based on multi X-Y encoder integration.

机译:基于多X-Y编码器集成的纳米级多轴精密机床中的实时自校准和几何误差测量。

获取原文
获取原文并翻译 | 示例

摘要

In high precision manufacturing, such as semiconductor fabrication, we clearly would like to achieve nanometer-level precision in multi-axis stage positioning, over a span of several hundred millimeters of motion. Achieving high precision in machines requires, first of all, being able to measure motion with high precision. The main measurement errors are caused by measurement error of metrology and stage error motion. When the stage error motion is highly repeatable, it can be calibrated and compensated by software. That is an economical way to improve the accuracy of multi-axis precision machine.; This dissertation will develop a measurement model of multi-axis precision machine using multi X-Y encoders based on rigid body kinematics. Stage design configurations are optimized to minimize measurement error caused by stage error motion.; In the presented real-time self-calibration algorithm, the error of X-Y grating is modeled as 2-D periodic band-limited signal, which is further decomposed into superposition of 1-D signals. This avoids calibration uncertainty blowing up due to the curse of dimensionality. The difference between outputs of dual XY grating-based metrology is employed to produce measurement equations, which will counteract measurement error coming from the same quasi-static error sources, such as thermal induced error and stage error motion. This algorithm is based on the translation property of the DFT. In our approaches, perfect translation is implemented by translating the sensor head. The error propagation property of separating systematic error of metrology in spatial frequency domain is investigated, and it is proved that a DFT based calibration algorithm is insensitive to measurement noise during calibration. The main calibration uncertainty caused by non-periodic errors are minimized by virtual closure, square reversal and orthogonal decomposition.; The scales are fabricated by interferometric lithography, where a laser source is split and recombined to form regular fringes. To obtain a two-dimensional scale, a second exposure must be performed with the scale rotated at 90 degrees to the original exposure. The scale error is a smooth function due to the deviation of the spherical wave exposure from the ideal case of plane wave interference. This results in an error function with low spatial frequency content; this makes not only software error compensation easier to implement, but a faster self-calibration process.; Both numerical simulations and experimental results are presented. With the experiments, it is shown that a X-Y grating with an error function reaching 1000nm in magnitude can be reduced, with self-calibration, to measurement-noise limited error (in our case, 10 nm). With the calibrated X-Y grating arrays, all six geometry errors of a stage in each axis of motion can be measured accurately, simultaneously and more efficiently in just two setups.
机译:在诸如半导体制造之类的高精度制造中,我们显然希望在几百毫米的运动范围内在多轴位移台定位中达到纳米级的精度。要实现机器的高精度,首先需要能够高精度地测量运动。主要的测量误差是由计量学的测量误差和位移台运动引起的。当载物台误差运动具有高度可重复性时,可以通过软件对其进行校准和补偿。这是一种提高多轴精密机床精度的经济方法。本文将基于刚体运动学,使用多个X-Y编码器建立多轴精密机床的测量模型。载物台设计配置经过优化,可最大程度地减少由载物台误差运动引起的测量误差。在提出的实时自校准算法中,将X-Y光栅的误差建模为二维周期性带限信号,并将其进一步分解为一维信号的叠加。这样可以避免因尺寸的诅咒而导致校准不确定性激增。利用基于双XY光栅的计量输出之间的差异来生成测量方程,该方程将抵消来自相同准静态误差源的测量误差,例如热感应误差和平台误差运动。该算法基于DFT的转换属性。在我们的方法中,通过平移传感器头可以实现完美的平移。研究了在空间频域中分离度量系统误差的误差传播特性,并证明了基于DFT的校准算法在校准过程中对测量噪声不敏感。非周期性误差引起的主要校准不确定性通过虚拟闭合,平方反转和正交分解最小化。这些标尺通过干涉光刻技术制造,其中激光源被分割并重新组合以形成规则的条纹。为了获得二维标尺,必须执行第二次曝光,并将标尺旋转至原始曝光90度。由于球形波曝光与理想的平面波干扰情况之间存在偏差,因此比例误差是一个平滑函数。这导致具有低空间频率含量的误差函数。这不仅使软件错误补偿更容易实现,而且使自校准过程更快。数值模拟和实验结果都被提出。通过实验表明,通过自校准,可以将误差函数幅度达到1000nm的X-Y光栅减小到测量噪声限制的误差(在我们的情况下为10 nm)。使用经过校准的X-Y光栅阵列,只需两个设置即可准确,同时且更有效地测量平台在每个运动轴上的所有六个几何误差。

著录项

  • 作者

    Lu, Xiaoming.;

  • 作者单位

    The University of New Mexico.;

  • 授予单位 The University of New Mexico.;
  • 学科 Engineering Mechanical.; Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 189 p.
  • 总页数 189
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号