首页> 外文学位 >Towards a better pose understanding for humanoid robots.
【24h】

Towards a better pose understanding for humanoid robots.

机译:为了更好地理解类人机器人。

获取原文
获取原文并翻译 | 示例

摘要

Humanoid Robots have been showing a rapidly increasing ability to interact with their surrounding environment. A large spectrum of such interactions focuses on how robots can mimic human postures and posture related actions, like walking, grasping, standing and sitting on objects. In many cases the robot has a clear and well defined description of general postures related to a given task. The topic of this thesis focuses on exploring human poses of humanoid robots and in images. Such understanding and learning will help to understand 3D pose modeling, which can support humanoid robots in their interaction with the environment.;In chapter one, we focus on generating physical poses for a NAO humanoid robot. To generate poses interactively, the poses should be controlled to satisfy any potential interaction with the environment. In this chapter, a simulated and real humanoid robot "NAO" is utilized to discover a fitness-based optimal sitting pose performed on various types of objects, varying in shape and height. Using an initial set of random valid sitting poses as the input generation, a genetic algorithm (GA) is applied to construct the fitness-based optimal pose for the robot to fit well on the object. The fitness criteria reflecting pose stability (i.e. how feasible the pose is based on real world physical limitation) converts poses into numerical stability level. The feasibility of the proposed approach is measured through a simulated environment using the V-Rep simulator. The real "NAO" robot performs the results generated by the simulation for real world evaluation.;Next, in chapter two we focus on generating 3D pose models using only query keywords. In this chapter, we propose a self-motivated approach to learn 3D human pose conformation without using a priori knowledge. The proposed framework benefits from known 2D human pose estimators using still images and continue to build a sufficient approximate pose representing a group of images. With such approximation we can build an approximate 3D model representing this pose conformation. The proposed framework steps forward towards a self-motivated conceptual analysis and recognition in humanoid robots. The goal for this framework is to relate query keywords with 3D human poses. We evaluate our approach with different query keywords representing a specific human pose. The results confirm the ability to learn 3D human poses without a priori knowledge.;Chapter three proposes a 3D analysis approach for 3D modeling. Our approach utilizes a human-pose based 3D shape context model for matching human-poses in 3D space, and filter them using a hierarchical binary clustering approach. The performance of this approach is evaluated with different query keywords.;Recovering a 3D human-pose in form of an abstracted skeleton from a 2D image suffers from loss of depth information. Assuming the projected pose is represented by a set of 2D landmarks capturing the pose limbs, recovering back the original 3D locations is an ill posed problem. To recover a 3D configuration, camera localization in 3D space plays a major role, an inaccurate camera localization might mislead the recovery process. In Chapter four, we propose a 3D camera localization model using only human-pose appearance in a single 2D image (i.e. the set of 2D landmarks). We apply a supervised multi class logistic regression to assign the camera location in 3D space. In the learning process, we assume a set of predefined labeled camera locations. The features we train consist of relative length of limbs and 2D shape context. The goal is to build a relation between these projected landmarks and the camera location in 3D space. This kind of analysis allows us to reconstruct 3D poses based on the 2D projection only without any predefined camera parameters. We test our model on a set of real images showing a variety of camera locations.
机译:人形机器人已经显示出与周围环境互动的能力迅速提高。此类交互的一大范围集中在机器人如何模仿人类姿势以及与姿势相关的动作上,如行走,抓握,站立和坐在对象上。在许多情况下,机器人对与给定任务有关的一般姿势有清晰且定义明确的描述。本文的主题集中在探索类人机器人的人体姿势和图像中。这种理解和学习将有助于理解3D姿势建模,该模型可以支持类人机器人与环境的交互。在第一章中,我们着重于为NAO类人机器人生成物理姿势。为了以交互方式生成姿势,应控制姿势以满足与环境的任何潜在交互。在本章中,利用模拟的真实人形机器人“ NAO”来发现对各种形状和高度不同的对象执行的基于健身的最佳坐姿。使用一组初始的随机有效坐姿作为输入生成,应用遗传算法(GA)构造基于适应度的最佳姿势,以使机器人很好地适合物体。反映姿势稳定性的适合度标准(即姿势基于现实世界的物理限制的可行性)将姿势转换为数值稳定性级别。拟议方法的可行性是通过使用V-Rep模拟器的模拟环境来衡量的。真正的“ NAO”机器人执行模拟生成的结果以用于现实世界评估。接下来,在第二章中,我们着重于仅使用查询关键字生成3D姿势模型。在本章中,我们提出了一种无需使用先验知识即可学习3D人体姿势构象的自我激励方法。所提出的框架得益于使用静止图像的已知2D人体姿势估计器,并继续建立代表一组图像的足够近似姿势。通过这种近似,我们可以构建表示此姿势构型的近似3D模型。拟议的框架朝着拟人机器人的自我激励概念分析和识别迈进了一步。该框架的目标是将查询关键字与3D人体姿势相关联。我们使用代表特定人体姿势的不同查询关键字来评估我们的方法。结果证实了无需先验知识即可学习3D人体姿势的能力。第三章提出了3D建模的3D分析方法。我们的方法利用基于人体姿势的3D形状上下文模型来匹配3D空间中的人体姿势,并使用分层二进制聚类方法对其进行过滤。该方法的性能通过不同的查询关键字进行评估。从2D图像中以抽象骨架的形式恢复3D人体姿势会损失深度信息。假设投影姿势由捕获姿势肢体的一组2D地标表示,则恢复原始3D位置是一个不适的问题。要恢复3D配置,3D空间中的摄像机本地化起着重要作用,不正确的摄像机本地化可能会误导恢复过程。在第四章中,我们提出了一个3D摄像机定位模型,该模型仅在单个2D图像(即2D界标的集合)中使用人为姿势。我们应用监督的多类逻辑回归来分配相机在3D空间中的位置。在学习过程中,我们假设一组预定义的带标签的摄像机位置。我们训练的特征包括四肢的相对长度和2D形状上下文。目标是在这些投影的地标与3D空间中的相机位置之间建立关系。这种分析允许我们仅基于2D投影来重建3D姿势,而无需任何预定义的相机参数。我们在一组显示各种相机位置的真实图像上测试模型。

著录项

  • 作者

    Al-Hami, Mo'taz.;

  • 作者单位

    Temple University.;

  • 授予单位 Temple University.;
  • 学科 Computer science.;Robotics.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 99 p.
  • 总页数 99
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号