首页> 外文学位 >Characterizing hydrologic settings and hydrologic regimes of headwater riparian wetlands in the ridge and valley of Pennsylvania.
【24h】

Characterizing hydrologic settings and hydrologic regimes of headwater riparian wetlands in the ridge and valley of Pennsylvania.

机译:表征宾夕法尼亚州山脊和山谷中源头河岸湿地的水文环境和水文状况。

获取原文
获取原文并翻译 | 示例

摘要

Drawing upon the opportunities to inform and be informed by the stream ecology literature by looking at wetlands in a 4-dimensional, dynamic, River Ecosystem Synthesis approach, this study sought to: better understand the hydrologic setting and the seasonal dynamics of the hydrologic regime for headwater wetlands in the Susquehanna River Basin. The objectives were achieved through a synthesis at the basin scale (Chapter 2) and detailed analyses in a single sub-watershed (Chapter 3) and a subset of wetlands with long-term water level records (Chapter 4). In Chapter 2, this work used the framework of the four-dimensional nature of the RES to generate a revised approach to scaling for the study of wetland services in the Susquehanna River Basin. One aspect of the revised scaling hierarchy was the use of a reach-scale. Chapter 3 used the understanding that in river ecosystems wetlands and, in turn high bio-complexity, occurs where there are laterally and longitudinally unconstrained reaches. This research identified what topographic characteristics defined unconstrained reaches in this physiographic setting based on the known occurrence of wetlands in the study area. Chapter 4 explored the vertical and temporal dimensions of wetlands in this physiographic setting by exploring the relationships between water level, wetland type, and seasonal fluctuations across years with a range of drought and deluge conditions using time series analysis.;Chapter 2 is a synthesis of the efforts of the ecological portion of a study of climate change and ecosystem services provided by freshwater wetlands of the Susquehanna River Basin study to characterize and map a hierarchical landscape classification for use in the study. The scaling hierarchy analysis not only identified a gap in spatial scale of data between disciplines, but it identified the reach as a scale to bridge that gap. Building upon several existing classification schemes, a revised hierarchical landscape classification was generated: Basin, Physiographic Province, Sub-watershed, Channel Reach, and Habitat (macro- and micro-). This work not only proposed the use of a reach scale, rare in wetland studies but very common in stream studies, but articulated a process-based macro- and micro-habitat classification.;Chapter 3 improved the spatial prediction of headwater riparian wetlands through identification of reach settings unconstrained latitudinally and longitudinally that allow for this three dimensional exchange of water. Known locations of mapped, non-open water National Wetlands Inventory (NWI) wetlands, field-identified non-NWI wetlands, and non-wetland locations (n=40, 30, and 35, respectively) were used to build a predictive partition tree. Predictive variables were DEM-derived topographic indices for the stream reaches: valley width, mean stream slope, and contributing area. The partition tree resulted in a 5-node tree (overall R2=0.61). These classes ranged from very high likelihood of wetland occurrence to very low likelihood of wetland occurrence or least constrained to most constrained. This classification is a useful approach to characterizing wetland and non-wetland reach settings, especially in screening out the least likely wetland-supporting or most constrained reaches within a watershed.;Chapter 4 used a suite of time series analyses to explore the hydrographs of five headwater wetlands in terms of their dynamics and response to climatic drivers. Cross correlations between daily differences in water levels and precipitation showed significant correlations for most wetlands under dry and wet conditions on the same day time lag. Of the wetlands evaluated, all experienced a summer drawdown in water level except for the wettest sites in the wettest years. Further, the timing of the beginning of summer drawdown varied greatly for the period of record for the three studied wetlands (slope=61 days; headwater floodplain=58 days; and riparian depression=91 days) with the slope wetland drawing down earlier on average than headwater floodplain or slope wetlands (average day of the year 132, 156, 152 respectively). The moving averages of the water levels generally followed the trends of the downstream stream baseflow, except for the wettest site in the wettest year. Though the hydrologic data are only available as a highly discontinuous record over a 10-year period, more continuous records when analyzed as case studies with time series analyses can give insight into the dynamics and responses of hydrologic behavior of headwater wetlands to climatic drivers. (Abstract shortened by UMI.)
机译:借助以四维动态河流生态系统综合方法研究湿地的机会,以溪流生态学文献为基础,本研究旨在:更好地了解河床的水文环境和水文状况的季节性动态。萨斯奎哈纳河流域的上游水源湿地。通过在流域尺度上进行综合(第2章)并在单个子流域(第3章)和具有长期水位记录的湿地子集(第4章)中进行详细分析,实现了目标。在第2章中,这项工作使用RES的四维性质的框架来生成一种修订的方法,用于研究Susquehanna流域的湿地服务。修订后的缩放等级的一个方面是使用覆盖范围。第三章的理解是,在河流生态系统中,湿地以及随之而来的高生物复杂性发生在横向和纵向不受限制的河段。这项研究根据已知的研究区域内湿地的发生情况,确定了在该地理环境中哪些地形特征定义为不受限制的范围。第4章通过时间序列分析探索了多年干旱条件下的水位,湿地类型和季节性波动与干旱之间的关系,从而探讨了这种生理环境中湿地的垂直和时间尺度。萨斯奎哈纳河流域淡水湿地研究气候变化和生态系统服务研究的生态部分的工作,以表征和绘制用于该研究的分层景观分类。可伸缩性层次分析不仅确定了学科之间数据空间规模的差距,而且将覆盖范围确定为弥合该差距的规模。在现有的几种分类方案的基础上,生成了修订的分层景观分类:流域,自然地理省,子集水区,河道和人居(宏观和微观)。这项工作不仅提出了在湿地研究中很少使用但在河流研究中非常普遍的可达规模的使用,而且阐明了基于过程的宏观和微观栖息地分类。第三章通过识别改进了水源河岸湿地的空间预测。不受纬度和纵​​向限制的设置范围,可以进行三维水交换。使用已映射的非开阔水域国家湿地清单(NWI)湿地,现场确定的非NWI湿地和非湿地的已知位置(分别为n = 40、30和35)来构建预测性分区树。预测变量是河流到达的DEM派生的地形指数:谷宽,平均河流坡度和贡献面积。分区树生成了一个5节点树(总R2 = 0.61)。这些类别的范围从非常高的湿地发生可能性到非常低的湿地发生可能性,或者最小限度到最大限制。这种分类方法是表征湿地和非湿地河段环境的有用方法,尤其是在筛选流域内最不可能得到湿地支持或最受约束的河段时。第4章使用了一系列时间序列分析来探索5个水文图源头湿地的动态和对气候驱动器的响应。在同一天的时间间隔内,在干燥和潮湿条件下,大多数湿地的水位与降水的每日差异之间的相互关系显示出显着的相互关系。在评估的湿地中,除了最湿润的年份中最湿润的地点以外,所有的湿地都经历了夏季的水位下降。此外,在三个记录的湿地(坡度= 61天;水源洪泛区= 58天;河岸洼地= 91天)的记录期内,夏季水位下降的开始时间有很大不同,坡度湿地的平均下降时间更早比上游水漫滩或斜坡湿地(分别为132、156和152年的平均日)多。除最湿年份中最湿的部位外,水位的移动平均值通常遵循下游水流的趋势。尽管水文数据只能以10年的高度不连续的记录形式使用,但是当进行时间序列分析作为案例研究进行分析时,更多的连续记录可以深入了解源头湿地对气候驱动因素的动态和响应。 (摘要由UMI缩短。)

著录项

  • 作者

    Hychka, Kristen Carol.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Biology Ecology.;Hydrology.;Geomorphology.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 198 p.
  • 总页数 198
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号