首页> 外文学位 >Sub-wavelength resonance imaging and addressing of cesium atoms trapped in an optical lattice.
【24h】

Sub-wavelength resonance imaging and addressing of cesium atoms trapped in an optical lattice.

机译:亚波长共振成像和捕获在光学晶格中的铯原子的寻址。

获取原文
获取原文并翻译 | 示例

摘要

We demonstrate a resonance imaging protocol for optical lattices that enables robust preparation and single qubit addressing of atoms with sub-wavelength resolution in 1D. A 3D optical lattice consisting of three sets of independent 1D counter-propagating laser beams provides the trapping potential for the atoms. On this optical lattice platform, a long-period 1D superlattice is imposed by interfering two laser beams at a shallow angle centered at the atoms. This superlattice creates a position-dependent shift of the qubit transition frequency defined between two spin states in the ground manifold. Isolated 2D planes of atoms are prepared by flipping the resonant spins with a microwave pulse and removing the non-resonant spins by pushing them out of the lattice with a resonant laser beam. The periodic planes of atoms that are prepared can be imaged by applying another microwave pulse and detecting the fluorescence from the spins that flip back to the initial state, as a function of superlattice displacement between the preparation and read-out pulses.;By employing these new techniques for sub-wavelength imaging, we tested the effectiveness of using composite pulses for addressing the trapped atoms in an optical lattice. Composite pulse techniques can be used to reduce the sensitivity of the addressing to small variations in the relative position and intensity of the lattices. This robustness is achieved by applying numerically generated composite pulses that have a constant atomic response within a target range of relative lattice positions and intensities. We designed a composite microwave pulse that flips the spin with near unit fidelity for all atoms that are positioned within a target spatial region, while conserving the spin of the atoms outside of that region. This cannot be accomplished with plain pulses due to off-resonant excitation. We also expanded the concept of this technique for robustly addressing spins even further to implement independent unitaries, or single qubit quantum gates, across several adjacent lattice sites. Finally, in order to quantitatively measure the fidelity of these robust composite pulses, we perform a randomized benchmarking procedure, which was first proposed by Knill.
机译:我们展示了一种用于光学晶格的共振成像协议,该协议可实现一维亚波长分辨率的原子的稳健制备和单量子位寻址。由三组独立的1D对向传播激光束组成的3D光学晶格为原子提供了捕获势。在此光学晶格平台上,通过以原子为中心的浅角度干涉两束激光束,形成了长周期的一维超晶格。该超晶格在地面歧管中的两个自旋状态之间定义了量子位跃迁频率的位置相关位移。通过用微波脉冲翻转共振自旋,并通过共振激光束将非共振自旋从晶格中推出,可以去除原子的二维平面。制备的原子的周期平面可以通过施加另一个微波脉冲并检测来自自旋的荧光来成像,这些自旋翻转回初始状态,这取决于制备和读出脉冲之间的超晶格位移。在亚波长成像的新技术中,我们测试了使用复合脉冲解决光学晶格中捕获的原子的有效性。复合脉冲技术可用于降低寻址对晶格的相对位置和强度的微小变化的敏感性。通过施加在相对晶格位置和强度的目标范围内具有恒定原子响应的数字生成复合脉冲,可以实现这种鲁棒性。我们设计了一个复合微波脉冲,它可以对位于目标空间区域内的所有原子以接近单位的保真度翻转自旋,同时保留该区域外的原子自旋。由于失谐激励,这不能用普通脉冲完成。我们还扩展了该技术的概念,以进一步稳健地解决自旋,从而跨多个相邻晶格位点实现独立的unit或单个量子位量子门。最后,为了定量地测量这些鲁棒的复合脉冲的保真度,我们执行了由Knill首次提出的随机基准程序。

著录项

  • 作者

    Lee, Jae Hoon.;

  • 作者单位

    The University of Arizona.;

  • 授予单位 The University of Arizona.;
  • 学科 Physics Quantum.;Physics Optics.;Physics Atomic.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 204 p.
  • 总页数 204
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号