首页> 外文学位 >Low temperature sintering of nanosized ceramic powder: YSZ-bismuth oxide system.
【24h】

Low temperature sintering of nanosized ceramic powder: YSZ-bismuth oxide system.

机译:纳米陶瓷粉的低温烧结:YSZ-氧化铋体系。

获取原文
获取原文并翻译 | 示例

摘要

In this study, the mechanism of sintering and kinetics of nanosized YSZ powder in the presence of Bi2O3 were investigated. The sintering mechanism of YSZ-Bi2O3 system has not been understood well. It has been supposed that liquid phase sintering is main mechanism at temperatures 900°C or higher because Bi2O 3 melts at 825°C. However, the results of the present study indicate that this is not true and that the observed sintering enhancement by Bi 2O3 is entirely due to some solid state mechanism (at least for systems with less than about 5 mole% Bi2O3). A new mechanism termed "stress assisted rearrangement sintering" (STARS) is proposed.; STARS occurs when several conditions are met simultaneously. The first condition is the dissolution of Bi2O3 in YSZ. The dissolution of Bi2O3 is associated with a large increase in the concentration of oxygen ion vacancies. The concentration of vacancies is especially large on the surface of the crystallites. This highly defective surface has a high surface mobility. The second condition is the precipitation of monoclinic ZrO2. An additional driving force besides high surface energy of starting nanosized YSZ powder for densification comes from the large stresses caused by the inter-granular precipitation of ZrO2. The third condition is the inhibition of YSZ crystallite growth. The inter-crystallite ZrO 2 precipitates also act as Zener barriers preventing further growth of crystallites. Thus the driving force is not dissipated by coarsening and is used exclusively for densification process.; STARS does not occur at higher amounts (>about 5 mole%) of Bi2O 3 because the system composition moves out of the two phase region and into a 3-phase region containing a Bi-rich liquid phase at the sintering temperature. In this situation, liquid phase sintering dominates. Bi2O 3-rich liquid phase forms during heating at about 850°C. Significant growths of crystallites and of composite grains are observed in this region.; The overall porosity of YSZ-Bi2O3 system after STARS is controlled by the residual macropores formed by the large size of the initial Bi2O3 particles. Bi2O3 dissolves in YSZ leaving behind micronsize pores (macropores). These pores are removed very slowly only in the final stages of sintering.; The ionic conductivity of YSZ-4.5 mole% Bi2O3 sample sintered at 900°C for 1 hour is measured to be about two times higher than that of pure YSZ sintered at 1500°C for 1 hour. The reason for the higher conductivity in YSZ-4.5 mole% Bi2O3 is because of increased concentration of oxygen ion vacancies. This indicates that STARS may be an efficient way to sinter the YSZ electrolyte used in solid oxide fuel cells at low temperatures without loss of ionic conductivity.
机译:在这项研究中,研究了Bi2O3存在下纳米YSZ粉末的烧结机理和动力学。 YSZ-Bi2O3体系的烧结机理尚未被很好地理解。由于Bi 2 O 3在825℃下熔融,因此认为在900℃以上的温度下液相烧结是主要的机理。然而,本研究的结果表明这是不正确的,而且观察到的Bi 2O3的烧结增强作用完全是由于某种固态机制(至少对于Bi2O3小于约5摩尔%的系统而言)。提出了一种新的机制,称为“应力辅助重排烧结”(STARS)。当同时满足多个条件时,就会发生STARS。第一个条件是Bi2O3在YSZ中的溶解。 Bi 2 O 3的溶解与氧离子空位浓度的大量增加有关。在微晶的表面上空位的浓度特别大。该高度缺陷的表面具有高的表面迁移率。第二个条件是单斜ZrO2的沉淀。除了用于致密化的纳米YSZ粉末的高表面能以外,还有一个额外的驱动力来自ZrO2的晶间沉淀所引起的大应力。第三个条件是抑制YSZ晶体的生长。晶体间的ZrO 2沉淀物还充当齐纳势垒,阻止了晶体的进一步生长。因此,驱动力不会因粗化而消失,仅用于致密化过程。在较高的Bi2O 3含量(> 5摩尔%)下,不会发生STARS,因为在烧结温度下,系统组成从两相区域移出,并进入含有富含Bi的液相的三相区域。在这种情况下,液相烧结占主导地位。在约850°C的加热过程中形成富含Bi2O 3的液相。在该区域观察到微晶和复合晶粒的显着生长。 STARS之后,YSZ-Bi2O3系统的整体孔隙度由初始Bi2O3颗粒的大尺寸形成的残留大孔控制。 Bi2O3溶解在YSZ中,留下微孔(大孔)。这些孔仅在烧结的最后阶段才非常缓慢地除去。经测量,在900℃下烧结1小时的YSZ-4.5摩尔%Bi2O3样品的离子电导率是在1500℃下烧结1小时的纯YSZ的约2倍。 YSZ-4.5摩尔%Bi2O3中电导率较高的原因是由于氧离子空位浓度的增加。这表明,STARS可能是在低温下烧结固体氧化物燃料电池中使用的YSZ电解质而又不损失离子传导性的有效方法。

著录项

  • 作者

    Kim, Hyungchan.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 249 p.
  • 总页数 249
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号