首页> 外文学位 >Thermodynamics, Entropy, Information and the Efficiency of Solar Cells.
【24h】

Thermodynamics, Entropy, Information and the Efficiency of Solar Cells.

机译:热力学,熵,信息和太阳能电池的效率。

获取原文
获取原文并翻译 | 示例

摘要

For well over 50 years, the limits to photovoltaic energy conversion have been known and codified, and have played a vital role in the push for technological breakthroughs to reach---and even attempt to surpass---those limits. This limit, known as the Shockley-Queisser detailed-balance limit, was found by using only the most basic of thermodynamic assumptions, and therefore provides an upper bound that is difficult to contest without violating the laws of thermodynamics. Many different schemes have been devised to improve a solar cell's efficiency beyond this limit, with various benefits and drawbacks for each method.;Since the field of solar cell research has been analyzed and dissected for so long by a large variety of researchers, it is quite hard to say or discover anything new without repeating the work of the past. The approach taken in this work is to analyze solar cells from the joint perspective of thermodynamics and information theory. These two subjects have recently been appreciated to be highly interrelated, and using the formalism of Missing Information, we can differentiate between different novel technologies, as well as devise new limits for new and existing methodologies.;In this dissertation, the fundamentals of photovoltaic conversion are analyzed from the most basic of principles, emphasizing the thermodynamic parameters of the photovoltaic process. In particular, an emphasis is made on the voltage of the device, as opposed to the current. This emphasis is made since there is a direct relation between the open-circuit voltage of a solar cell and the fundamental equations of thermodynamics and the Free Energy of the system. Moreover, this relation extends to the entropy of the system, which subsequently relates to the field of Information Theory. By focusing on the voltage instead of the current, realizations are made that are not obvious to the majority or researchers in the field, and in particular to efforts of surpassing the Shockley-Queisser limit, known as "3rd generation" concepts.;After analyzing the standard single-junction cell, other forms of surpassing the detailed-balance limit are presented and discussed, from the viewpoint of entropy and its relation to the amount of information lost or produced in the photovoltaic conversion process. In addition to the well-known 3rd generation methods: up- and down-conversion, carrier multiplication and intermediate band solar cells, other ideas are discussed such as using Feedback to shift the optimal bandgap of the cell, and the use of spectral splitting to completely utilize the solar spectrum. The focus on entropy (and the open-circuit voltage) as the primary variable of interest uncovers new limitations to these processes, and denotes preferences of certain technologies over others.;Using this parallel approach provides insights into the field that were either neglected or not realized. This work thus provides a new set of guidelines for searching for and analyzing innovative techniques to maximize the power conversion efficiency from solar cells.
机译:50多年来,光伏能量转换的极限已为人所知并已被整理,在推动技术突破以达到甚至超越这些极限方面发挥了至关重要的作用。仅通过使用最基本的热力学假设来发现此限制,称为Shockley-Queisser详细平衡限制,因此该上限提供了一个难以违反热力学定律的上限。已经设计出许多不同的方案来提高太阳能电池的效率,使其超过此限制,每种方法都有其优点和缺点。自从太阳能电池研究领域经过了众多研究人员的分析和剖析以来,不重复过去的工作就很难说或发现任何新东西。这项工作采用的方法是从热力学和信息论的联合角度分析太阳能电池。最近,这两个主题之间存在高度的联系,我们可以使用“缺失信息”的形式主义来区分不同的新技术,并为新方法和现有方法设定新的限制。从最基本的原理进行分析,强调光伏过程的热力学参数。特别地,重点在于设备的电压,而不是电流。由于太阳能电池的开路电压与热力学基本方程和系统的自由能之间存在直接关系,因此需要强调。而且,这种关系扩展到系统的熵,该熵随后涉及信息论领域。通过专注于电压而不是电流,可以实现对于本领域的大多数人或研究人员而言并不明显的实现,尤其是对于超越“肖克利-奎塞尔”极限(称为“第三代”概念)的努力。从熵及其与光电转换过程中丢失或产生的信息量的关系的角度出发,讨论并讨论了标准的单结电池以及其他超出详细平衡限制的形式。除了众所周知的第三代方法:上转换和下转换,载流子倍增和中频带太阳能电池之外,还讨论了其他一些想法,例如使用“反馈”来改变电池的最佳带隙,以及使用光谱分裂完全利用太阳光谱对熵(和开路电压)的关注是关注的主要变量,揭示了这些过程的新局限性,并表明了某些技术相对于其他技术的偏好。使用这种并行方法可以提供对被忽略或未被忽略的领域的洞察力实现。因此,这项工作为搜索和分析创新技术以使太阳能电池的功率转换效率最大化提供了一组新的指导原则。

著录项

  • 作者

    Abrams, Zeev R.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Alternative Energy.;Engineering General.;Physics Theory.;Energy.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 135 p.
  • 总页数 135
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号