首页> 外文学位 >Highly Electroactive Biofuel Cell developed using amine electro-oxidation technique for novel strategy of immobilization of Enzyme on fabricated Carbon MEMS Electrodes.
【24h】

Highly Electroactive Biofuel Cell developed using amine electro-oxidation technique for novel strategy of immobilization of Enzyme on fabricated Carbon MEMS Electrodes.

机译:使用胺电氧化技术开发的高电活性生物燃料电池,用于将酶固定在制成的碳MEMS电极上的新策略。

获取原文
获取原文并翻译 | 示例

摘要

The field of biofuel cell research has growth quickly within the last few decades due in large part to the growing technology and research done on miniaturization and micro- and nanotechnologies. The development of carbon electrodes and carbon MEMS have facilitated this growth even further. Biofuel cell, particularly, enzymatic biofuel cells have great potential in improving the ability to develop smaller and more efficient implantable devices. Due in large part to the fact that the fuel for these fuel cell can be find within the human body and the compatibility of carbon in physiological environment, biofuel cells can greatly reduce bulk of the power source for implantable device. Unfortunately, biofuel at its current stages due not have high enough activity or long lifetimes to meet the demands for most of these implantable devices.;To address these issues facing biofuel cells, our group decided to utilize highly electroactive carbon MEMS electrodes to achieve high electrode activity for our biofuel cells. We chose to use pyrolytic carbon MEMS electrode due to its high stability and electronic conductivity, but these electrode had a shortcoming of being relatively hard to functionalize. So we set out to develop our own method of immobilization of enzymes using amine electro-oxidation of Amino-benzoic Acid (ABA) and ethylene diamine (EDA). Coupled with helpful mediators, amino-anthracene and 2,5-dihydroxybenzaldehyde for the cathode and anode, respectively, we were able to functionalize and immobilize glucose oxidase for the anode and Laccase for the cathode and achieve extremely high electrode activity.
机译:在过去的几十年中,生物燃料电池研究领域得到了快速的发展,这在很大程度上归功于不断发展的技术以及对小型化以及微米和纳米技术的研究。碳电极和碳MEMS的发展进一步促进了这种增长。生物燃料电池,特别是酶促生物燃料电池,在提高开发更小,更有效的可植入设备的能力方面具有巨大潜力。在很大程度上,由于这些燃料电池的燃料可以在人体中找到以及碳在生理环境中的相容性这一事实,生物燃料电池可以大大减少可植入设备的电源体积。不幸的是,目前的生物燃料由于没有足够的活性或较长的寿命来满足大多数此类可植入设备的需求。为了解决生物燃料电池面临的这些问题,我们小组决定利用高电活性碳MEMS电极来实现高电极生物燃料电池的活性。由于其高稳定性和电子传导性,我们选择使用热解碳MEMS电极,但是这些电极的缺点是相对难以功能化。因此,我们着手开发使用氨基苯甲酸(ABA)和乙二胺(EDA)的胺电氧化来固定酶的方法。分别与有用的介体,氨基蒽和2,5-二羟基苯甲醛分别用于阴极和阳极,我们能够官能化和固定葡萄糖氧化酶用于阳极和漆酶用于阴极,并实现极高的电极活性。

著录项

  • 作者

    Holmberg, Sunshine.;

  • 作者单位

    University of California, Irvine.;

  • 授予单位 University of California, Irvine.;
  • 学科 Engineering General.;Engineering Biomedical.;Chemistry Biochemistry.
  • 学位 M.S.
  • 年度 2012
  • 页码 67 p.
  • 总页数 67
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号