首页> 外文学位 >Development of numerical methodologies for parameter identification and shape optimization in metal forming simulations =Desenvolvimento de metodologias para identificação de parâmetros e otimização de forma em simulações numéricas de processos de conform
【24h】

Development of numerical methodologies for parameter identification and shape optimization in metal forming simulations =Desenvolvimento de metodologias para identificação de parâmetros e otimização de forma em simulações numéricas de processos de conform

机译:在金属成形模拟中用于参数识别和形状优化的数值方法的发展=在整形过程数值模拟中用于参数识别和形状优化的方法的发展

获取原文
获取原文并翻译 | 示例

摘要

The interest of the stamping industry in the numerical simulation of sheet metal forming, including inverse engineering approaches, is increasing. This fact occurs mainly because trial and error design procedures, commonly used in the past, are no longer economically competitive. The use of simulation codes is currently a common practice in the industrial forming environment, as the results typically obtained by means of the Finite Element Method (FEM) are well accepted by both the industrial and scientific communities. In order to obtain accurate stress and strain fields, an effective FEM analysis requires reliable input data such as geometry, mesh, non-linear material behaviour laws, loading cases, friction laws, etc.. In order to overcome these difficulties, a possible approach is based on inverse problems. In this work, the following inverse problems in computational Mechanics are presented and analysed: (i) parameter identification problem, that refer to the definition of input parameters to be used in constitutive models for numerical simulations, based on experimental data, and (ii) initial blank and tool design problem, where the aim would be to estimate the initial shape of a blank or a tool in order to achieve the desired geometry after the forming process. New optimization strategies in parameter identification problems that lead more efficiently to accurate material parameters are introduced and implemented. The aim of these strategies is to take advantage of the strength of each selected algorithm and improve the overall robustness and efficiency of classical optimization methodologies based on single stages. Deterministic algorithms, evolutionary-inspired algorithms or even the combination of these two algorithms are used in the proposed strategies. Strategies such as cascade, parallel and hybrid approaches are analysed in detail. In hybrid strategies, cascade and parallel approaches are integrated. Two different approaches are presented and analyzed for the evaluation of the objective functions in parameter identification processes. The approaches considered are single-point and FE analyses. The single infinitesimal point evaluation seems to characterize an infinitesimal amount of material subjected to all kind of deformation history. On the other hand, in all FE analysis codes, the constitutive model is implemented and accounted for in each element integration point. Inverse problems, such as blank and tool design, are presented and described. In the case of the initial blank optimization process the design of a carter is presented. Also related to the initial blank optimization process, a study of the influence of the initial geometry definition in the optimization process is conducted. This study is performed considering the NURBS formulation to model the blank upper surface that will be changed during the optimization process. In the case of the tool design problem, a two-stage forging process is presented. In order to achieve a straight cylinder after forging, two different approaches are analyzed. In the first one, the initial geometry of the cylinder is optimized and, in the other one, the shape of the first stage tool is optimized. To parameterize the free surface of the cylinder different methods are presented. Furthermore, in order to define the tool in this example, different parameterizations are presented. The optimisation strategies proposed in this work efficiently solve optimisation problems for the industrial metal forming.
机译:冲压行业对钣金成形的数值模拟(包括逆向工程方法)的兴趣正在增加。发生此事实的主要原因是,过去通常使用的反复试验设计程序在经济上不再具有竞争力。目前,在工业成型环境中,通常使用模拟代码,因为通常通过有限元方法(FEM)获得的结果已为工业界和科学界所接受。为了获得准确的应力和应变场,有效的FEM分析需要可靠的输入数据,例如几何形状,网格,非线性材料行为定律,载荷工况,摩擦定律等。为了克服这些困难,可能的方法是基于反问题。在这项工作中,提出并分析了计算力学中的以下反问题:(i)参数识别问题,指的是基于实验数据的数字化本构模型中要使用的输入参数的定义,以及(ii)初始毛坯和工具设计问题,其目的是估计毛坯或工具的初始形状,以便在成型过程后获得所需的几何形状。引入并实施了参数识别问题中的新优化策略,可以更有效地导致准确的材料参数。这些策略的目的是利用每种选定算法的优势,并提高基于单阶段的经典优化方法的整体鲁棒性和效率。确定性算法,启发式算法甚至这两种算法的组合都用于所提出的策略中。详细分析了诸如级联,并行和混合方法之类的策略。在混合策略中,级联和并行方法被集成。提出并分析了两种不同的方法来评估参数识别过程中的目标函数。所考虑的方法是单点和有限元分析。单个无穷小点的评估似乎表征了经受各种变形历史的无穷小数量的材料。另一方面,在所有有限元分析代码中,本构模型都在每个元素集成点中实现和解释。提出并描述了反问题,例如毛坯和刀具设计。在最初的空白优化过程中,提出了卡特的设计。还与初始毛坯优化过程有关,对初始几何形状定义在优化过程中的影响进行了研究。进行此研究时要考虑NURBS公式,以对在优化过程中将要更改的空白上表面进行建模。在工具设计问题的情况下,提出了一个两阶段的锻造过程。为了在锻造后获得直圆柱,分析了两种不同的方法。在第一个中,优化了圆柱体的初始几何形状,在另一个中,优化了第一级工具的形状。为了参数化圆柱体的自由表面,提出了不同的方法。此外,为了在此示例中定义工具,提出了不同的参数设置。在这项工作中提出的优化策略有效地解决了工业金属成型的优化问题。

著录项

  • 作者单位

    Universidade de Aveiro (Portugal).;

  • 授予单位 Universidade de Aveiro (Portugal).;
  • 学科 Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 260 p.
  • 总页数 260
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号