首页> 外文学位 >Numerical Methods for the Elliptic Monge-Ampere Equation and Optimal Transport.
【24h】

Numerical Methods for the Elliptic Monge-Ampere Equation and Optimal Transport.

机译:椭圆蒙格安培方程和最优输运的数值方法。

获取原文
获取原文并翻译 | 示例

摘要

The problem of optimal transport, which involves finding the most cost-efficient way of transporting mass from one location to another, has been widely-studied, going back to the late eighteenth century. Recent years have revealed numerous applications in areas such as medical imaging, meteorology, cosmology, oceanography, and economics. Despite the importance of optimal transport, the computation of solutions remains extremely challenging. In the simplest case, where the cost function is quadratic, the problem takes on additional structure. In this setting, the constraint that mass must be conserved can be expressed as a fully non-linear partial differential equation known as the elliptic Monge-Ampere equation.;The numerical solution of the Monge-Ampere equation has received a great deal of attention in recent years, yet the correct and efficient computation of solutions remains a challenge. Because of the nonlinearity of the equation, solutions can be singular and standard numerical approaches can fail. This means that novel solution techniques are needed to correctly capture the behaviour of weak solutions. We describe a monotone finite difference discretisation, which provably converges to the viscosity solution of the Monge- Ampere equation. The accuracy of the discretisation is improved by combining higher-order schemes with the monotone scheme needed to capture the correct behaviour of solutions near singularities. In doing this, we provide a general result about the convergence of higherorder finite difference methods for elliptic equations. The resulting nonlinear equations are solved efficiently using Newton's method.;To ensure that mass is mapped into the desired region, the Monge-Ampere equation must be coupled to a transport boundary condition. This type of boundary condition is non-standard, and previously has been implemented only in very simple cases (such as transporting a square to a square). We propose a new method for implementing the transport condition by solving a sequence of more tractable Monge-Ampere equations with Neumann boundary conditions. To demonstrate the effectiveness and efficiency of the resulting methods, we provide computational results for a number of challenging problems including the recovery of inverse maps, mapping onto unbounded density functions, mapping from a disconnected domain, and mapping onto non-convex sets.
机译:最佳运输问题涉及寻找从一个地点到另一个地点的最具成本效益的运输方式,这一问题已被广泛研究,可以追溯到18世纪后期。近年来,在医学成像,气象学,宇宙学,海洋学和经济学等领域已显示出大量应用。尽管优化运输很重要,但解决方案的计算仍然极具挑战性。在最简单的情况下,成本函数是二次函数,该问题采用其他结构。在这种情况下,必须守恒的约束条件可以表达为一个完全非线性的偏微分方程,即椭圆蒙格安培方程。蒙格安培方程的数值解受到了广泛的关注。近年来,解决方案的正确和有效计算仍然是一个挑战。由于方程的非线性,解决方案可能是奇异的,并且标准数值方法可能会失败。这意味着需要新颖的解决方案技术来正确捕获弱解决方案的行为。我们描述了一个单调有限差分离散化,它可以证明收敛于Monge-Ampere方程的粘度解。通过将高阶方案与捕获接近奇点的解的正确行为所需的单调方案相结合,可以提高离散化的准确性。通过这样做,我们提供了关于椭圆方程的高阶有限差分方法的收敛性的一般结果。使用牛顿法可以有效地求解得到的非线性方程。为了确保将质量映射到所需区域,必须将Monge-Ampere方程与运输边界条件耦合。这种类型的边界条件是非标准的,并且以前仅在非常简单的情况下(例如,将正方形运输到正方形)才实施。我们提出了一种通过求解具有诺伊曼边界条件的更易处理的蒙格-安培方程组来实现运输条件的新方法。为了证明所得方法的有效性和效率,我们提供了许多具有挑战性的问题的计算结果,包括逆映射的恢复,映射到无界密度函数,从不连续域映射以及映射到非凸集。

著录项

  • 作者

    Froese, Brittany Dawn.;

  • 作者单位

    Simon Fraser University (Canada).;

  • 授予单位 Simon Fraser University (Canada).;
  • 学科 Applied mathematics.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 163 p.
  • 总页数 163
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 能源与动力工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号