首页> 外文学位 >Aerothermal and aeroelastic response prediction of aerospace structures in high-speed flows using direct numerical simulation.
【24h】

Aerothermal and aeroelastic response prediction of aerospace structures in high-speed flows using direct numerical simulation.

机译:利用直接数值模拟预测高速流动中航空航天结构的气热和气弹响应。

获取原文
获取原文并翻译 | 示例

摘要

Future high-speed air vehicles will be lightweight, flexible, and reusable. Ve- hicles fitting this description are subject to severe thermal and fluid dynamic loading from multiple sources such as aerothermal heating, propulsion sys- tem exhaust, and high dynamic pressures. The combination of low-margin design requirements and extreme environmental conditions emphasizes the occurrence of fluid-thermal-structural coupling. Numerous attempts to field such vehicles have been unsuccessful over the past half-century due par- tially to the inability of traditional design and analysis practices to predict the structural response in this flight regime. In this thesis, a high-fidelity computational approach is used to examine the fluid-structural response of aerospace structures in high-speed flows. The method is applied to two cases: one involving a fluid-thermal interaction problem in a hypersonic flow and the other a fluid-structure interaction study involving a turbulent boundary layer and a compliant panel. The coupled fluid-thermal investigation features a nominally rigid alu- minum spherical dome fixed to a ceramic panel holder placed in a Mach 6.59 laminar boundary layer. The problem was originally studied by Glass and Hunt in a 1988 wind tunnel experiment in the NASA Langley 8-Foot High Temperature Tunnel and is motivated by thermally bowed body panels designed for the National Aerospace Plane. In this work, the compressible Navier-Stokes equations for a thermally perfect gas and the transient heat equation in the structure are solved simultaneously using two high-fidelity solvers coupled at the solid-fluid interface. Predicted surface heat fluxes are within 10% of the measured values in the dome interior with greater differ- ences found near the dome edges where uncertainties concerning the exper- imental model's construction likely influence the thermal dynamics. On the flat panel holder, the local surface heat fluxes approach those on the wind- ward dome face due to a dome-induced horseshoe vortex scouring the panel's surface. Comparisons with reduced-order models of heat transfer indicate that they perform with varying levels of accuracy around some portions of the geometry while completely failing to predict significant heat loads in re- gions where the dome-influenced flow impacts the ceramic panel. Cumulative effects of flow-thermal coupling at later simulation times on the reduction of panel drag and surface heat transfer are quantified. The second fluid-structure study investigates the interaction between a thin metallic panel and a Mach 2.25 turbulent boundary layer with an ini- tial momentum thickness Reynolds number of 1200. A transient, non-linear, large deformation, 3D finite element solver is developed to compute the dynamic response of the panel. The solver is coupled at the fluid-structure interface with the compressible Navier-Stokes solver, the latter of which is used for a direct numerical simulation of the turbulent boundary layer. In this approach, no simplifying assumptions regarding the structural solution or turbulence modeling are made in order to get detailed solution data. It is found that the thin panel state evolves into a flutter type response char- acterized by high-amplitude, high-frequency oscillations into the flow. The oscillating panel disturbs the supersonic flow by introducing compression waves, modifying the turbulence, and generating fluctuations in the power exiting the top of the flow domain. The work in this thesis serves as a step forward in structural response prediction in high-speed flows. The results demonstrate the ability of high- fidelity numerical approaches to serve as a guide for reduced-order model improvement and as well as provide accurate and detailed solution data in scenarios where experimental approaches are difficult or impossible.
机译:未来的高速飞行器将轻巧,灵活且可重复使用。符合此说明的车辆会受到来自多种因素的严重热和流体动态载荷,例如空气热加热,推进系统排气和高动态压力。低利润设计要求和极端环境条件的结合强调了流-热-结构耦合的发生。在过去的半个世纪中,由于这种传统的设计和分析方法无法预测这种飞行状态下的结构响应,因此许多尝试将这种飞行器投入使用均未成功。本文采用高保真度计算方法研究了航空航天结构在高速流动中的流固响应。该方法适用于两种情况:一种涉及高超声速流中的流体-热相互作用问题,另一种涉及湍流边界层和顺应面板的流体-结构相互作用研究。流体热耦合研究的特征是标称刚性的铝球形圆顶固定在陶瓷面板支架上,该陶瓷面板支架放置在6.59马赫的层流边界层中。该问题最初是由Glass和Hunt在1988年在NASA Langley 8英尺高温隧道中进行的风洞实验中研究的,该问题是由为国家航空航天飞机设计的热弓形车身面板引起的。在这项工作中,使用耦合在固-液界面的两个高保真度求解器同时求解了热理想气体的可压缩Navier-Stokes方程和结构中的瞬态热方程。预测的表面热通量在球顶内部的测量值的10%以内,并且在球顶边缘附近发现更大的差异,其中关于实验模型构造的不确定性可能会影响热力学。在平板支架上,由于圆顶引起的马蹄涡流冲刷了面板表面,局部表面热通量接近迎风形圆顶表面的通量。与降阶传热模型的比较表明,它们在几何形状的某些部分周围具有不同水平的精度,而完全无法预测圆顶影响的流动影响陶瓷板的区域中的显着热负荷。量化了在以后的模拟时间流-热耦合对面板阻力和表面传热减少的累积影响。第二项流体结构研究研究了薄金属板与初始动量厚度为雷诺数1200的马赫2.25湍流边界层之间的相互作用。开发了一种瞬态,非线性,大变形的3D有限元求解器计算面板的动态响应。求解器在流体结构界面处与可压缩的Navier-Stokes求解器耦合,后者用于湍流边界层的直接数值模拟。在这种方法中,没有进行关于结构解或湍流建模的简化假设以获取详细的解数据。发现薄板状态演变为颤动型响应,其特征是进入流中的高振幅,高频振荡。振荡面板通过引入压缩波,修改湍流并在离开流域顶部的功率中产生波动来扰动超声速流。本文的工作为高速流动的结构响应预测迈出了一步。结果表明,高保真数值方法可以用作降阶模型改进的指南,并可以在难以或不可能采用实验方法的情况下提供准确而详细的解决方案数据。

著录项

  • 作者

    Ostoich, Christopher Mark.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 256 p.
  • 总页数 256
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号