首页> 外文学位 >Preparation and characterization of nanostructured metal oxides for application to biomass upgrading Polar (111) metal oxide surfaces for pyrolysis oil upgrading and lignin depolymerization.
【24h】

Preparation and characterization of nanostructured metal oxides for application to biomass upgrading Polar (111) metal oxide surfaces for pyrolysis oil upgrading and lignin depolymerization.

机译:纳米结构金属氧化物的制备和表征,用于生物质的提质用于热解油提质和木质素解聚的极性(111)金属氧化物表面。

获取原文
获取原文并翻译 | 示例

摘要

Pyrolysis oil, or bio-oil, is one of the most promising methods to upgrade a variety of biomass to transportation fuels. Moving toward a more "green" catalytic process requires heterogeneous catalysis over homogeneous catalysis to avoid extraction solvent waste. Nanoscale catalysts are showing great promise due to their high surface area and unusual surfaces. Base catalyzed condensation reactions occur much quicker than acid catalyzed condensation reactions. However, MgO is slightly soluble in water and is susceptible to degradation by acidic environments, similar to those found in fast-pyrolysis oil. Magnesium oxide (111) has a highly active Lewis base surface, which can catalyze Claisen-Schmidt condensation reactions in the organic phase. It has been shown previously that carbon coating a catalyst, such as a metal oxide, provides integrity while leaving the catalytic activity intact. Here, carbon-coated MgO(111) will be discussed with regards to synthesis, characterization and application to bio-oil upgrading through model compounds. Raman spectroscopy and HR-TEM are used to characterize the thickness and carbon-bonding environment of the carbon coating. Propanal self-condensation reactions have been conducted in the aqueous phase with varying amounts of acetic acid present. Quantitative analysis by gas chromatography was completed to determine the catalytic activity of CC-MgO(111). ICP-OES analysis has been conducted to measure the magnesium concentration in the product solution and give insight into the leaching of the catalyst into the reaction solution.
机译:热解油或生物油是将各种生物质升级为运输燃料的最有前途的方法之一。迈向更加“绿色”的催化过程需要在均相催化上进行非均相催化,以避免萃取溶剂的浪费。纳米级催化剂由于其高表面积和不寻常的表面而显示出巨大的希望。碱催化的缩合反应比酸催化的缩合反应发生得快得多。但是,MgO易溶于水,并且在酸性环境中易降解,这与快速热解油中的类似。氧化镁(111)具有高活性的路易斯碱表面,可催化有机相中的Claisen-Schmidt缩合反应。先前已经表明,碳涂覆催化剂,例如金属氧化物,提供完整性,同时保持催化活性完整。在这里,将讨论碳包覆的MgO(111)的合成,表征以及通过模型化合物应用于生物油提质的应用。拉曼光谱和HR-TEM用于表征碳涂层的厚度和碳键合环境。丙烷自缩合反应已在水相中进行,其中存在不同量的乙酸。通过气相色谱法完成定量分析,以确定CC-MgO(111)的催化活性。进行了ICP-OES分析以测量产物溶液中的镁浓度,并深入了解催化剂向反应溶液中的浸出。

著录项

  • 作者

    Finch, Kenneth.;

  • 作者单位

    Colorado School of Mines.;

  • 授予单位 Colorado School of Mines.;
  • 学科 Alternative Energy.;Energy.;Nanotechnology.;Chemistry Organic.;Chemistry Inorganic.
  • 学位 M.S.
  • 年度 2013
  • 页码 101 p.
  • 总页数 101
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号