首页> 外文学位 >Model based control of machining processes: Exploration of Bayesian statistical methods for identification and control.
【24h】

Model based control of machining processes: Exploration of Bayesian statistical methods for identification and control.

机译:基于模型的加工过程控制:探索用于识别和控制的贝叶斯统计方法。

获取原文
获取原文并翻译 | 示例

摘要

Machining process modeling & simulation as well as in-process monitoring and control have been identified as key technological factors to power efficient manufacturing facilities of tomorrow. The effective utilization of process models and in-process control are aimed towards improving profitability of the manufacturing process. To that end, the objective of this research work is to improve machining performance by implementing in-process control using model based control strategies, while considering stochastic models of machining process.;Machining performance is derived from its relation to profitability. Single operation level and part machining level profitability relates to peak machining forces, dimensional accuracy and tool life. A holistic system perspective of machining process modeling is presented through which identification of machining performance metric becomes efficient. Since machining models are the relationships between machining performance metrics and the machining inputs and have dependence on the machining application chosen, an application dependence metric map is created.;In this work, Bayesian statistical methods are deployed for parameter and state estimation for static and dynamic machining process models. Bayesian methods use probabilistic descriptions of models and leverage the prior knowledge of machining process. This way they combine the best of analytical (first principle based) and numerical (data generated) techniques. Current work explores the Bayesian inference techniques for linear, nonlinear and dynamic models for parameter and state estimation. Computational Bayesian inference is implemented by various methods (Gaussian Approximation, Laplace Approximation, variational approach, Monte Carlo methods, Grid based methods etc). In this work a novel Grid based Markov Chain Monte Carlo (MCMC) method has been proposed. This method alleviates the shortcomings of parent methods (Grid based estimation and MCMC method), and exhibits faster convergence to true parameter values. The proposed method is validated using both synthetic and experimental data. Bayesian Model selection methodology is discussed in short with synthetic and experimental data validation.;This work proposes a novel feed-forward model driven adaptive control architecture using Bayesian methods for parameter adaptation. The machining force control is deployed on CNC lathe for experimental implementation. Using the prior knowledge of the machining process model, the force setpoint is converted in a feed-rate setpoint. The feed-rate is the control input that governs the machining force system. The feed-rate is controlled using feed-rate override knob on CNC machine. The machining force is measured using strain gage instrumented cutting tool. The Bayesian statistical methods developed are used in real-time to update the parameter estimates, converging to true parameter values, thereby satisfying the control objective. It is important to note that this control architecture was found insensitive to sudden changes in cutting load because of its feed forward nature. Also, the control needs to be tuned only for the feed-rate override control system, there is no separate controller required for machining force.;As an extension of the single part/operation control framework, a multi-stage manufacturing process application is considered along with a demonstrative case that highlights the usefulness of identifying the process parameters. A multi-stage machining problem for the bar turning is considered, where bar is partially hardened. In case of no active control, the machining forces rise in the hardened part of the bar. When adaptive control architecture is used (as described earlier), the parameters are identified as well as machining force is kept constant by adjusting the feed-rate. The parameters identified can then be supplied to subsequent machine performing next machining operation. The parameters identified can also serve as product quality indicators. This sets the foundation of multiple machine-multiple process manufacturing control using models, which then can further be analyzed for profitability of the manufacturing process and the enterprise. (Abstract shortened by UMI.).
机译:加工过程的建模和仿真以及过程中的监视和控制已被确定为为明天的高效制造设施提供动力的关键技术因素。有效利用过程模型和过程中控制旨在提高制造过程的盈利能力。为此,本研究的目的是通过考虑基于加工过程的随机模型,通过使用基于模型的控制策略实施过程中控制来提高加工性能。加工性能源自其与获利能力的关系。单一操作水平和零件加工水平的获利能力与峰值加工力,尺寸精度和刀具寿命有关。提出了加工过程建模的整体系统观点,通过它可以有效地识别加工性能指标。由于加工模型是加工性能指标和加工输入之间的关系,并且依赖于所选择的加工应用程序,因此创建了应用程序依赖关系图。;在这项工作中,贝叶斯统计方法被部署用于静态和动态的参数和状态估计加工过程模型。贝叶斯方法使用模型的概率描述,并利用加工过程的先验知识。这样,他们结合了最好的分析(基于第一原理)和数值(生成数据)技术。当前的工作探索了用于参数和状态估计的线性,非线性和动态模型的贝叶斯推理技术。计算贝叶斯推断是通过各种方法(高斯近似,拉普拉斯近似,变分法,蒙特卡洛方法,基于网格的方法等)实现的。在这项工作中,提出了一种新的基于网格的马尔可夫链蒙特卡洛(MCMC)方法。该方法缓解了父方法(基于网格的估计和MCMC方法)的缺点,并且表现出更快的收敛于真实参数值。利用合成和实验数据验证了该方法的有效性。简要讨论了贝叶斯模型选择方法,并进行了合成和实验数据验证。这项工作提出了一种使用贝叶斯方法进行参数自适应的新型前馈模型驱动的自适应控制体系结构。加工力控制部署在CNC车床上进行实验实施。利用加工过程模型的先验知识,将力设定值转换为进给率设定值。进给速度是控制加工力系统的控制输入。使用CNC机床上的进给率倍率旋钮控制进给率。加工力是使用应变计测量的切削工具测量的。实时使用开发的贝叶斯统计方法更新参数估计值,收敛到真实的参数值,从而满足控制目标。重要的是要注意,由于其前馈特性,发现这种控制架构对切削负荷的突然变化不敏感。另外,仅需针对进给倍率控制系统进行控制调整,就无需单独的控制器来控制加工力。;作为单个零件/操作控制框架的扩展,考虑了多阶段制造过程的应用以及一个说明性案例,突出说明了识别过程参数的有用性。考虑了棒料车削的多阶段加工问题,其中棒料已部分硬化。在没有主动控制的情况下,加工力会在钢筋的硬化部分中升高。当使用自适应控制体系结构时(如前所述),可以通过调整进给率来识别参数并保持加工力恒定。然后可以将识别出的参数提供给后续的机器,以执行下一个加工操作。确定的参数也可以用作产品质量指标。这为使用模型的多机器多过程制造控制奠定了基础,然后可以进一步分析制造过程和企业的盈利能力。 (摘要由UMI缩短。)。

著录项

  • 作者

    Mehta, Parikshit.;

  • 作者单位

    Clemson University.;

  • 授予单位 Clemson University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 286 p.
  • 总页数 286
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号