首页> 外文学位 >The Influence of Molecular Transport on the Structure-Property Relationships of Amphiphilic Block Copolymer Membranes
【24h】

The Influence of Molecular Transport on the Structure-Property Relationships of Amphiphilic Block Copolymer Membranes

机译:分子运输对两亲嵌段共聚物膜结构-性能关系的影响

获取原文
获取原文并翻译 | 示例

摘要

Polymers are essential to modern life. Yet there still remains a wealth of knowledge to discover regarding novel polymeric materials, processing techniques, and applications. The synthesis and application of nanostructured amphiphilic block copolymers have attracted significant interests in the last decade. Depending on the structure, composition, and architecture; a wide range of applications have been reported in various fields of research. The need to accurately access the fundamental structure-property relationships in polymers are of paramount importance to the performance in various applications. Some of these applications include the use of polymer membranes for CO2 capture from flue gas, for water purification and wastewater treatment, as well as polymer electrolytes for lithium batteries. This dissertation therefore, focuses on contributing fundamental knowledge on the structure-property relationships of amphiphilic block copolymer membranes to improve its performance. With the use of poly(styrene--block--ethylene oxide), (SEO) and high molecular weight poly(ethylene oxide) membranes and polystyrenes of various molecular weight and tacticity, experimental work has been conducted with relevant consideration in the aforementioned application areas.;The fundamental study of the effects of molecular transport (e.g. water vapor) in an amphiphilic block copolymer membrane consisting of hydrophilic blocks of poly(ethylene oxide) and hydrophobic blocks of polystyrene (PS-b-PEO) was investigated. The influence of water solubility and diffusivity on the block copolymer morphology were examined at various temperatures and water concentrations. A comprehensive study conducted using Fourier-transform infrared spectroscopy (FTIR) to investigate the effect of water activity on PEO crystallinity, and how the PEO crystallinity in turn affects water sorption and diffusion was investigated. Also, isothermal vapor-sorption equilibria and diffusion coefficients of water in different architectures of block copolymer membranes will be discussed. This fundamental study is important for applications that rely on PEO-containing materials, as PEO crystallite melting dramatically impacts transport and mechanical properties.;For lithium battery application, the study of ion association effects and the ion-polymer interactions in high molecular weight poly(styrene--ethylene oxide) block copolymer (SEO) and complexes with lithium bis(trifluoromethane sulfonyl) imide salt (LiTFSI) as polymer electrolyte using FTIR-ATR spectroscopy were conducted. The dissolution of the lithium salt in the PEO phase as it influences the structure of the ion conducting phase of the polymer (PEO) was investigated. The infrared bands observed in the polymer--salt complexes as a function of salt concentration and temperature show different solvation and degree of ion association behavior. An understanding of the relationship between ionic conductivity and degree of solvation of lithium salts as a function of ion concentration was explained from the FTIR-ATR results. Also, Structural and stress relaxations have been measured with x-ray photon correlation spectroscopy (XPCS) and rheology, respectively, as a function of salt concentration and temperature. Results from XPCS experiments showed hyperdiffusive motion for various lithium salt concentrations and at varying temperatures, which is indicative of soft glassy materials. This behavior is attributed to cooperative dynamics. The decay time was a weak, non-monotonic function of salt concentration and decreased with increasing temperature, in an Arrhenius fashion. In contrast, the shear modulus decreased with increasing salt concentration and increasing temperature. The entanglement relaxation from rheological measurements followed Vogel-Fulcher-Tammann behavior. The structural decay time was slower than the entanglement relaxation time at temperatures above the glass transition temperature, but they were approximately equal at Tg regardless of salt concentration. This may indicate a fundamental connection between cooperative structural motion and polymer chain motion in this material.
机译:聚合物对现代生活至关重要。然而,关于新颖的聚合物材料,加工技术和应用,仍然有大量的知识可以发现。在过去的十年中,纳米结构的两亲性嵌段共聚物的合成和应用引起了人们的极大兴趣。取决于结构,组成和架构;在各个研究领域中已经报道了广泛的应用。准确访问聚合物中基本结构-性质关系的需求对于各种应用中的性能至关重要。这些应用中的一些应用包括将聚合物膜用于从烟道气中捕集CO2,进行水净化和废水处理,以及将聚合物电解质用于锂电池。因此,本论文着重于为两亲性嵌段共聚物膜的结构-性质关系提供基础知识,以改善其性能。通过使用聚(苯乙烯-嵌段-环氧乙烷),(SEO)和高分子量聚(环氧乙烷)膜以及各种分子量和立构规整度的聚苯乙烯,在上述应用中进行了相关考虑的实验工作研究了由聚环氧乙烷的亲水性嵌段和聚苯乙烯的疏水性嵌段(PS-b-PEO)组成的两亲性嵌段共聚物膜中分子传输(例如水蒸气)影响的基础研究。在各种温度和水浓度下,检查了水溶性和扩散性对嵌段共聚物形态的影响。使用傅里叶变换红外光谱(FTIR)进行的全面研究旨在研究水活度对PEO结晶度的影响,并研究PEO结晶度又如何影响水的吸收和扩散。此外,还将讨论嵌段共聚物膜不同结构中水的等温蒸气吸附平衡和扩散系数。这项基础研究对于依赖于含PEO的材料的应用非常重要,因为PEO的微晶熔融会显着影响运输和机械性能。;对于锂电池应用,研究高分子量聚合物中离子缔合效应和离子-聚合物相互作用使用FTIR-ATR光谱仪进行了苯乙烯-环氧乙烷嵌段共聚物(SEO)以及与双(三氟甲烷磺酰基)酰亚胺锂盐(LiTFSI)的配合物作为高分子电解质的研究。研究了锂盐在PEO相中的溶解,因为它影响聚合物(PEO)的离子导电相的结构。聚合物-盐配合物中观察到的红外波段随盐浓度和温度变化而变化,显示出不同的溶剂化和离子缔合行为的程度。从FTIR-ATR结果解释了对离子电导率和锂盐溶剂化程度与离子浓度的关系的理解。同样,分别通过X射线光子相关光谱法(XPCS)和流变学测量了结构和应力松弛随盐浓度和温度的变化。 XPCS实验的结果表明,在各种锂盐浓度和变化的温度下,超扩散运动都表明其为软质玻璃状材料。此行为归因于合作动态。衰变时间是盐浓度的一种弱的,非单调的函数,并且以阿伦尼乌斯的方式随温度升高而降低。相反,剪切模量随盐浓度和温度的升高而降低。流变学测量的缠结松弛遵循了Vogel-Fulcher-Tammann行为。在高于玻璃化转变温度的温度下,结构衰变时间比缠结弛豫时间要慢,但是无论盐浓度如何,它们在Tg下大约相等。这可能表明该材料中协同结构运动与聚合物链运动之间存在基本联系。

著录项

  • 作者

    Oparaji, Onyekachi Donatus.;

  • 作者单位

    The Florida State University.;

  • 授予单位 The Florida State University.;
  • 学科 Chemical engineering.;Alternative Energy.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 179 p.
  • 总页数 179
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号