首页> 外文学位 >Cellular Mechanisms Underlying Formation and Elongation of Axial Structures in Mouse Embryos.
【24h】

Cellular Mechanisms Underlying Formation and Elongation of Axial Structures in Mouse Embryos.

机译:小鼠胚胎中轴结构形成和伸长的基础细胞机制。

获取原文
获取原文并翻译 | 示例

摘要

All vertebrate embryos, which generally begin as a sphere or disc, must form an elongated body axis with a head on one end and a tail on the other. Defects in axial elongation result not only in a shortened body axis, but are also often associated with neural tube closure defects. Cell behaviors contributing to the elongation of axial structures are well understood in anamniote model systems, but are only now being elucidated in mammalian embryos. Through the development of novel culturing and imaging techniques, we are able to directly observe murine development by live timelapse confocal imaging. Using this four-dimensional imaging approach, we have identified cellular mechanisms underlying the formation and elongation of several axial structures within mouse embryos, including the primitive streak, neural plate, and notochordal plate. We have found that, unlike its avian counterpart, the murine primitive streak does not form through convergent extension (CE), but rather by progressive initiation of epithelial-mesenchymal transition (EMT). The neural plate undergoes CE by mediolateral cell intercalation, a process which includes cooperation of distinct apical and basolateral mechanisms within neural epithelial cells, and is under the control of planar cell polarity (PCP) signaling. Finally, the notochordal plate also exhibits mediolateral cell intercalation, which occurs concomitantly with directed lamellipodia-driven migration. Some of these cellular mechanisms are strikingly similar to, and others surprisingly different from, those at work in other model systems. These findings greatly increase our understanding of mammalian development, and have important implications in the evolution of developmental processes.
机译:通常以球形或盘状开始的所有脊椎动物胚胎必须形成细长的体轴,一端为头,另一端为尾。轴向伸长的缺陷不仅会导致体轴缩短,而且还会导致神经管闭合缺损。羊膜模型系统已经很好地理解了有助于延长轴向结构的细胞行为,但直到现在才在哺乳动物胚胎中阐明。通过开发新的培养和成像技术,我们能够通过实时延时共聚焦成像直接观察鼠的发育。使用这种三维成像方法,我们已经确定了小鼠胚胎内几个轴向结构(包括原始条纹,神经板和脊索板)的形成和伸长的细胞机制。我们发现,与禽类相对应的不同,鼠的原始条纹不是通过会聚延伸(CE)而是通过上皮-间质转化(EMT)的逐步启动而形成的。神经板通过中外侧细胞插入而经历CE,该过程包括神经上皮细胞内不同的顶端和基底外侧机制的协同作用,并且受平面细胞极性(PCP)信号的控制。最后,脊索板还表现出中外侧细胞插入,这与定向的lamellipodia驱动的迁移同时发生。这些细胞机制中的某些机制与其他模型系统中的机制极为相似,而其他机制则令人惊讶。这些发现极大地增进了我们对哺乳动物发育的理解,并对发育过程的演变具有重要意义。

著录项

  • 作者单位

    University of Virginia.;

  • 授予单位 University of Virginia.;
  • 学科 Health Sciences Human Development.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 280 p.
  • 总页数 280
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号