首页> 外文学位 >Application of Effective Medium Modeling to Plasmonic Nanosphere Waveguides.
【24h】

Application of Effective Medium Modeling to Plasmonic Nanosphere Waveguides.

机译:有效介质建模在等离子纳米球波导中的应用。

获取原文
获取原文并翻译 | 示例

摘要

A proposed visible spectrum nanoscale imaging method requires material with permittivity values much larger than those available in real world materials to shrink the visible wavelength to attain the desired resolution. It has been proposed that the extraordinarily slow propagation experienced by light guided along plasmon resonant structures is a viable approach to obtaining these short wavelengths. To assess the feasibility of such a system, an effective medium model of a chain of Noble metal plasmonic nanospheres is developed, leading to a straightforward calculation of the waveguiding properties.;Evaluation of other models for such structures that have appeared in the literature, including an eigenvalue problem nearest neighbor approximation, a multi- neighbor approximation with retardation, and a method-of-moments method for a finite chain, show conflicting expectations of such a structure. In particular, recent publications suggest the possibility of regions of invalidity for eigenvalue problem solutions that are considered far below the onset of guidance, and for solutions that assume the loss is low enough to justify perturbation approximations. Even the published method-of-moments approach suffers from an unjustified assumption in the original interpretation, leading to overly optimistic estimations of the attenuation of the plasmon guided wave.;In this work it is shown that the method of moments approach solution was dominated by the radiation from the source dipole, and not the waveguiding behavior claimed. If this dipolar radiation is removed the remaining fields ought to contain the desired guided wave information. Using a Prony's-method-based algorithm the dispersion properties of the chain of spheres are assessed at two frequencies, and shown to be dramatically different from the optimistic expectations in much of the literature.;A reliable alternative to these models is to replace the chain of spheres with an effective medium model, thus mapping the chain problem into the well-known problem of the dielectric rod. The solution of the Green function problem for excitation of the symmetric longitudinal mode (TM01) is performed by numerical integration. Using this method the frequency ranges over which the rod guides and the associated attenuation are clearly seen. The effective medium model readily allows for variation of the sphere size and separation, and can be taken to the limit where instead of a chain of spheres we have a solid Noble metal rod. This latter case turns out to be the optimal for minimizing the attenuation of the guided wave.;Future work is proposed to simulate the chain of photonic nanospheres and the nanowire using finite-difference time-domain to verify observed guided behavior in the Green's function method devised in this thesis and to simulate the proposed nanosensing devices.
机译:所提出的可见光谱纳米级成像方法需要介电常数值比现实世界中的材料大得多的材料,以缩小可见光波长以获得所需的分辨率。已经提出,沿着等离子体激元共振结构引导的光经历的异常缓慢传播是获得这些短波长的可行方法。为了评估这种系统的可行性,开发了一种有效的贵金属等离子体纳米球链的介质模型,从而可以直接计算波导特性。评估文献中出现的此类结构的其他模型,包括特征值问题最近邻近似,带延迟的多邻域近似以及有限链的矩量法都显示出这种结构的预期矛盾。特别是,最近的出版物提出了对于特征值问题解决方案(被认为远远低于指导原则的起点)以及假定损失足够低以证明微扰近似合理的解决方案可能存在无效区域的可能性。即使是已公开的矩量法方法在原始解释中也遭受了不合理的假设,导致对等离激元导波衰减的估计过于乐观。在这项工作中,表明矩量法的求解方法主要由来自源偶极子的辐射,而不是声称的波导行为。如果消除了这种偶极辐射,则其余场应包含所需的导波信息。使用基于Prony方法的算法,可以在两个频率下评估球链的色散特性,并且与许多文献中的乐观预期有显着差异。;这些模型的可靠替代方案是替换链具有有效介质模型的球体,从而将链问题映射到介电棒的众所周知的问题中。通过数值积分来执行对称纵向模式(TM01)激励的格林函数问题的求解。使用这种方法,可以清楚地看到杆引导的频率范围和相关的衰减。有效的介质模型很容易允许球体尺寸和间距的变化,并且可以将球体限制为极限,而不是球体链,而是拥有实心的贵金属棒。后一种情况证明是最小化导波衰减的最佳方法。提出了未来的工作,以有限差分时域模拟光子纳米球和纳米线的链,以验证格林函数方法中观察到的导波行为本文设计并模拟了拟议的纳米传感装置。

著录项

  • 作者

    Hale, Paul.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Engineering Electronics and Electrical.;Physics Electricity and Magnetism.;Physics Optics.
  • 学位 M.S.
  • 年度 2013
  • 页码 180 p.
  • 总页数 180
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号