首页> 外文学位 >Silicon nanoparticle optimization and integration into amorphous silicon via PECVD for use in photovoltaics.
【24h】

Silicon nanoparticle optimization and integration into amorphous silicon via PECVD for use in photovoltaics.

机译:硅纳米颗粒的优化,并通过PECVD集成到非晶硅中,用于光伏。

获取原文
获取原文并翻译 | 示例

摘要

An alternative approach to traditional growth methods of nanocrystalline material is co-deposition by injection of separately synthesized silicon nanoparticles into amorphous silicon. Current methods of co-deposition of silicon nanoparticles and amorphous silicon via plasma enhanced chemical vapor deposition allow the two reactors' pressures to affect each other, leading to either poor amorphous silicon quality or uncontrollable nanoparticle size and deposition rate. In this thesis, a technique for greater control of stand-alone silicon nanoparticle size and quality grown was achieved by using a slit nozzle. The nozzle was used to separate the nanoparticle and amorphous reactors, allowing for the ability to control nanoparticle size, crystallinity, and deposition rate during co-deposition, while still allowing for high quality amorphous silicon growth. Changing the width of the nozzle allowed for control of the size of the nanoparticles from 10 to 4.5 nm in diameter, and allowed for the precursor gas flow rate, and thus deposition rate, to be changed with only a 6 % change in size estimated from luminescence emission wavelength. Co-deposited samples were grown within a broad range of flow rates for the silicon nanoparticle precursor gas, resulting in each sample having a different crystal fraction. FTIR, PL, Raman, and XRD were used to analyze their composition. The silicon nanoparticle synthesis was separately optimized to control size and crystallinity, and the influence of the nanoparticle process gases on amorphous silicon growth was also explored. Finally, COMSOL simulations were performed to support and possibly predict Si-NP growth variables that pertain to Si-NP size.
机译:纳米晶体材料传统生长方法的另一种方法是通过将分别合成的硅纳米颗粒注入非晶硅中进行共沉积。当前的通过等离子体增强化学气相沉积共沉积硅纳米颗粒和非晶硅的方法使两个反应器的压力相互影响,从而导致非晶硅质量差或纳米颗粒尺寸和沉积速率无法控制。在本文中,通过使用狭缝喷嘴实现了更好地控制独立硅纳米粒子尺寸和生长质量的技术。喷嘴用于分离纳米粒子和非晶态反应器,从而能够控制共沉积过程中的纳米粒子尺寸,结晶度和沉积速率,同时仍允许高质量的非晶硅生长。改变喷嘴的宽度允许将纳米颗粒的尺寸从直径控制为10纳米至4.5纳米,并允许改变前驱体气体的流量,从而改变沉积速率,而仅将纳米粒子的尺寸估计为6%。发光波长。共沉积样品在硅纳米颗粒前体气体的宽流速范围内生长,导致每个样品具有不同的晶体分数。 FTIR,PL,拉曼和XRD用于分析其组成。分别优化了硅纳米粒子的合成以控制尺寸和结晶度,并且还研究了纳米粒子工艺气体对非晶硅生长的影响。最后,进行COMSOL仿真以支持并可能预测与Si-NP尺寸有关的Si-NP生长变量。

著录项

  • 作者

    Klafehn, Grant W.;

  • 作者单位

    Colorado School of Mines.;

  • 授予单位 Colorado School of Mines.;
  • 学科 Theoretical physics.;Materials science.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 102 p.
  • 总页数 102
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号