首页> 外文学位 >Development and validation of heat transfer model to predict indoor air temperatures in roofpond buildings.
【24h】

Development and validation of heat transfer model to predict indoor air temperatures in roofpond buildings.

机译:传热模型的开发和验证,以预测屋顶水池室内的空气温度。

获取原文
获取原文并翻译 | 示例

摘要

Roofponds mimic the ways in which nature tempers and controls the global climate; they utilize higher heat capacity of water to passively control the temperature of the interior space. From a thermal standpoint, roofponds are strong performers, providing high solar savings fractions, interior temperature stability, enhanced thermal comfort and very low operational power requirements. Moreover, due to convective heat transfer within the water bags, heat gains or losses are quickly distributed throughout the roofpond to create a very homogeneous distribution of heat throughout the floor area covered by the system.;Research by Harold Hay and John Yellott (Hay & Yellott, 1968) studied the feasibility of the roofpond system and tried to develop a heat transfer model for roofponds with insulation. During the late 1960s, several of their publications discussed the heating and cooling potential produced by various roofpond strategies. Throughout the 70's and 80's, a number of heat transfer models were developed to simulate different roofpond systems. Researchers at Trinity University tried to simplify the complexity of the simulation model without compromising the accuracy of its prediction. However, only a couple of them considered the whole building's heat transfer mechanisms.;This research intends to develop a model to predict the hourly indoor air temperatures in a single-zone building featuring a roofpond. Like most of the passive design strategies, roofponds are difficult to model as they have; too many independent variables, mostly climatic parameters that influence the performance of the roofpond. However, the indoor air temperature of such a passive building (without mechanical conditioning systems) is highly influenced by the change in the daily outdoor air temperature profile as well as the incoming solar radiation. A transfer-function unsteady state model can predict the indoor air temperature of a roofpond building quite accurately. Such model can be greatly handy to design professionals for quick evaluation of such system during the early schematic design phase.;The study herewith presented uses data collected from a roofpond test cell located at the NEAT Laboratory of the University of Nevada, Las Vegas, and implements unsteady-state thermal heat transfer principles to predict average interior temperatures. The three distinct phases of the project are: first, to predict indoor air temperatures using transfer-function heat transfer equations; second, to statistically fine-tune the model by finding the correlation between the predicted and the measured temperature; and third, to validate the model using a different data set.;A thermal network model of the roofpond using the transfer-function method with a time step (DeltaT) of one hour is used to calculate the indoor air temperature. Measured data of 14 days is used to develop the unsteady state heat-transfer model that can predict the average indoor air temperature. The predicted temperature then is regressed against the measured temperature to find the correlation. The cyclic patterns observed in residuals indicate the daily change in the outdoor temperature profile and imply that time-series model with Fourier series is apt for de-trending the pattern.;The model is then empirically modified to increase accuracy. Auto Correlation Factor (ACF) and Partial Auto Correlation Factor (PACF) tests suggested that either Auto Regressive (AR) or Auto Regressive Integrated Moving Average (ARIMA) model would neutralize residuals. The empirically developed AR / ARIMA model is then added with the physical model to predict the interior air temperature. The AR(2) model which yielded the best fit model, was tested against data from another summer month for validation. The proposed validated hybrid model is capable of addressing the change in configuration of the roofpond building and can accurately predict the indoor air temperature.
机译:Roofponds模仿大自然调节和控制全球气候的方式;他们利用更高的水热容量来被动控制内部空间的温度。从热学的角度来看,roofponds是一款性能卓越的产品,可提供较高的太阳能节省率,内部温度稳定性,增强的热舒适性和非常低的运行功率要求。此外,由于水袋内的对流传热,热量的得失迅速散布在整个屋顶水池中,从而在整个系统覆盖的地板区域内产生非常均匀的热量分布。; Harold Hay和John Yellott的研究(Hay& Yellott,1968年)研究了屋顶蓬系统的可行性,并试图建立带有隔热层的屋顶蓬的传热模型。在1960年代后期,他们的一些出版物讨论了各种屋檐策略产生的供热和制冷潜力。在整个70年代和80年代,开发了许多传热模型来模拟不同的屋檐系统。三一大学的研究人员试图简化仿真模型的复杂性,而又不影响其预测的准确性。但是,只有少数几个考虑了整个建筑物的传热机制。该研究旨在开发一种模型来预测具有屋顶平台的单区域建筑物的每小时室内空气温度。像大多数被动设计策略一样,roofpond很难像它们一样建模。太多的自变量,主要是影响屋顶水池性能的气候参数。但是,这种被动式建筑物(不带机械调节系统)的室内空气温度受每日室外空气温度分布以及入射太阳辐射的变化影响很大。传递函数非稳态模型可以非常准确地预测屋顶水池建筑物的室内空气温度。这样的模型对于设计专业人员来说可以非常方便,以便在早期的原理图设计阶段快速评估该系统。此处提出的研究使用了从位于内华达大学拉斯维加斯分校NEAT实验室的天顶测试室收集的数据,以及实施非稳态热传递原理来预测平均内部温度。该项目分为三个不同的阶段:首先,使用传递函数传热方程式预测室内空气温度;其次,通过找到预测温度和测量温度之间的相关性,对模型进行统计微调;第三,使用不同的数据集对模型进行验证。使用传递函数法,以一个小时的时间步长(DeltaT)来计算屋顶水池的热网络模型,以计算室内空气温度。使用14天的实测数据来开发可以预测室内平均气温的非稳态传热模型。然后将预测温度与测得的温度进行回归以找到相关性。在残差中观察到的循环模式表明了室外温度曲线的每日变化,这意味着具有傅里叶级数的时间序列模型易于反趋势化;然后对模型进行经验修改以提高准确性。自相关因子(ACF)和部分自相关因子(PACF)测试表明,自回归(AR)或自回归综合移动平均(ARIMA)模型将中和残差。然后,将根据经验开发的AR / ARIMA模型与物理模型相加,以预测内部空气温度。根据另一个夏季月份的数据对产生最佳拟合模型的AR(2)模型进行了验证。提出的经过验证的混合模型能够解决屋顶水池建筑的结构变化,并能够准确预测室内空气温度。

著录项

  • 作者

    Hossain, Afzal.;

  • 作者单位

    University of Nevada, Las Vegas.;

  • 授予单位 University of Nevada, Las Vegas.;
  • 学科 Architecture.
  • 学位 M.Arch.
  • 年度 2013
  • 页码 109 p.
  • 总页数 109
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号