首页> 外文学位 >A theoretical study of cyclohexyne addition to carbonyl-c(alpha) bonds: allowed and forbidden electrocyclic and nonpericyclic ring-openings of strained cyclobutenes.
【24h】

A theoretical study of cyclohexyne addition to carbonyl-c(alpha) bonds: allowed and forbidden electrocyclic and nonpericyclic ring-openings of strained cyclobutenes.

机译:对羰基-c(α)键加环己炔的理论研究:应变环丁烯的允许和禁止的电环和非周环开环。

获取原文
获取原文并翻译 | 示例

摘要

The mechanism of cyclohexyne insertion into a C(O)-Calpha bond of cyclic ketones, explored experimentally by the Carreira group, has been investigated using density functional theory. B3LYP and M06.2X calculations were performed in both gas phase and THF (CPCM, UAKS radii). The reaction proceeds through a stepwise [2 + 2] cycloaddition of cyclohexyne to the enolate, followed by three disparate ring-opening possibilities of the cyclobutene alkoxide to give the product: (1) thermally allowed conrotatory electrocyclic ring-opening, (2) thermally forbidden disrotatory electrocyclic ring-opening, or (3) nonpericyclic C.C bond cleavage. Our computational results for the model alkoxide and potassium alkoxide systems show that the thermally allowed electrocyclic ring- opening pathway is favored by less than 1 kcal/mol. In more complex systems containing a potassium alkoxide (e-f), the barrier of the allowed conrotatory ring- opening is disfavored by 4-8 kcal/mol. This suggests that the thermodynamically more stable disrotatory product can be formed directly through a "forbidden" pathway. Analysis of geometrical parameters and atomic charges throughout the ring-opening pathways provides evidence for a nonpericyclic C-C bond cleavage, rather than a thermally forbidden disrotatory ring-opening. A true forbidden disrotatory ring-opening transition structure was computed for the cyclobutene alcohol; however, it was 19 kcal/mol higher in energy than the allowed conrotatory transition structure. An alternate mechanism in which the disrotatory product forms via isomerization of the conrotatory product was also explored for the alkoxide and potassium alkoxide systems.
机译:Carreira研究组通过密度泛函理论研究了环己炔插入环状酮的C(O)-Calpha键的机理。在气相和THF(CPCM,UAKS半径)中均进行了B3LYP和M06.2X计算。反应通过将环己炔逐步[2 + 2]环加成到烯醇化物上,然后通过环丁烯醇盐的三种不同的开环可能性而得到产物:(1)加热允许旋转的电环开环,(2)加热禁止旋转性环开环或(3)非周环CC键断裂。我们对模型醇盐和醇盐钾盐系统的计算结果表明,热允许的电环开环途径受小于1 kcal / mol的青睐。在更复杂的包含烷醇钾(e-f)的系统中,允许的旋转开环的屏障被4-8 kcal / mol不利。这表明热力学上更稳定的可旋转产物可以直接通过“禁止”途径形成。整个开环路径的几何参数和原子电荷的分析提供了非周环C-C键裂解的证据,而不是热禁止的旋转性开环的证据。计算出了环丁烯醇的真正的禁止旋转开环过渡结构;但是,它的能量比允许的旋转过渡结构高19 kcal / mol。对于醇盐和醇钾体系,还探讨了通过旋转产物的异构化形成旋转产物的另一种机理。

著录项

  • 作者

    Sader, Charles Avery.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Chemistry General.;Chemistry Organic.
  • 学位 M.S.
  • 年度 2013
  • 页码 36 p.
  • 总页数 36
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号