首页> 外文学位 >Isotope fractionation of mercury during its biogeochemical transformations: Volatilization and reduction.
【24h】

Isotope fractionation of mercury during its biogeochemical transformations: Volatilization and reduction.

机译:汞在其生物地球化学转化过程中的同位素分馏:挥发和还原。

获取原文
获取原文并翻译 | 示例

摘要

This study focuses on the isotope fractionation of Hg during volatilization of Hg(0) and reduction of Hg(II) in aquatic systems for the purpose of understanding and tracking the biogeochemical cycle of Hg. Volatilization of Hg(0) across the water-air interface led to predominantly mass dependent isotope fractionation (MDF) with an average fractionation factor 10 3lnalpha202 = -0.46 +/- 0.02 (2SE). Lighter isotopes were preferentially volatilized, following a Rayleigh fractionation model. Photochemical reductions of Hg(II) by natural DOM and various low-molecular-weight organic compounds (LMWOC) yielded significant mass independent isotope fractionation (MIF) dominated by the magnetic isotope effects (MIE), which specifically enrich ((+)MIE) or deplete ((-)MIE) magnetic isotopes (99Hg and 201Hg) in reactants Hg(II). The direction of MIE depends on the initial spin multiplicity of the radical pairs generated as intermediates of primary photochemical procedures. In contrast, the MIF during abiotic non-photochemical reduction of Hg(II) is characterized by a distinct nuclear field shift effect (NFS), originating from the size and shape of nuclei instead of mass. The mechanisms of MIF ((+)MIE, (-)MIE and NFS) are intimately related to reaction mechanisms, and can consequently serve as a powerful tool in discerning different reduction pathways of Hg(II).;KEYWORDS: mercury, isotope fractionation, mass independent, magnetic isotope effect, nuclear field shift effect, volatilization, photochemical reduction, abiotic reduction, dissolved organic matter, low-molecular-weight organic compounds;The reactivity of Hg(II) in natural water is controlled by its organic ligands. Both kinetic and isotopic studies suggested the presence of multiple pools of Hg(II) with different reactivity caused by the binding of Hg(II) to different functional groups of natural DOM. Generally, Hg(II) bound to O/N donor groups was more reducible than those bound to reduced sulfur groups. (-)MIE was consistently induced by various sulfur-containing LMWOC during photochemical reduction of Hg(II), while most non-sulfur LMWOC led to (+)MIE. Therefore, the source of Hg(0) and the binding , environment of Hg(II) in water can be discerned using the direction of MIE.
机译:这项研究的重点是在水系统中Hg(0)挥发和Hg(II)还原过程中Hg的同位素分馏,目的是了解和跟踪Hg的生物地球化学循环。 Hg(0)在水-空气界面上的挥发导致平均质量分数为10 3lnalpha202 = -0.46 +/- 0.02(2SE)的质量依赖性同位素分离(MDF)。根据瑞利分馏模型,较轻的同位素优先挥发。天然DOM和各种低分子量有机化合物(LMWOC)对Hg(II)的光化学还原产生了显着的质量独立同位素分馏(MIF),主要由磁同位素效应(MIE)支配,从而特别富集了((+)MIE)或耗尽反应物Hg(II)中的((-)MIE)磁性同位素(99Hg和201Hg)。 MIE的方向取决于作为初级光化学程序的中间体而产生的自由基对的初始自旋多重性。相比之下,在非生物非光化学还原Hg(II)过程中,MIF的特征是明显的核场移效应(NFS),其起因于核的大小和形状而不是质量。 MIF((+)MIE,(-)MIE和NFS)的机制与反应机制密切相关,因此可以作为辨别Hg(II)不同还原途径的有力工具。关键词:汞,同位素分馏,质量独立,磁同位素效应,核迁移效应,挥发,光化学还原,非生物还原,溶解的有机物,低分子量有机化合物;天然水中Hg(II)的反应性受其有机配体控制。动力学和同位素研究均表明,存在多种具有不同反应性的Hg(II)池,这是由于Hg(II)与天然DOM的不同官能团结合引起的。通常,与O / N供体基团结合的Hg(II)比与还原硫基团结合的Hg(II)更易还原。 (-)MIE在光化学还原Hg(II)的过程中始终由多种含硫的LMWOC诱导,而大多数非硫的LMWOC导致(+)MIE。因此,可以利用MIE的方向来识别水中Hg(0)的来源和Hg(II)的结合环境。

著录项

  • 作者

    Zheng, Wang.;

  • 作者单位

    Trent University (Canada).;

  • 授予单位 Trent University (Canada).;
  • 学科 Biogeochemistry.;Geochemistry.;Environmental Sciences.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 273 p.
  • 总页数 273
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号