首页> 外文学位 >Coupling and simulation of acoustic fluid-structure interaction systems using localized Lagrange multipliers.
【24h】

Coupling and simulation of acoustic fluid-structure interaction systems using localized Lagrange multipliers.

机译:使用局部拉格朗日乘子的声流体-结构相互作用系统的耦合和仿真。

获取原文
获取原文并翻译 | 示例

摘要

This thesis presents a new coupling method for treating the interaction of an acoustic fluid with a flexible structure, with emphasis on handling spatially non-matching meshes. It is based on the Localized Lagrange Multiplier (LLM) method. A frame is introduced as a "mediator" or "information relay" device between the fluid and the structure at the interaction surface. The frame is discretized in terms of kinematic variables. A Lagrange multiplier field is introduced between the frame and the structure, and another one between the frame and the fluid. The function of the multiplier pair is weak enforcement of kinematic continuity. This configuration completely decouples the structure and fluid models, because each model communicates to the frame through node collocated multipliers and not directly to each other.; In order to assure proper communication, energy formulations of the fluid and structure models are in terms of displacements and associated time derivatives. A novel transformation of the fluid displacement model into a fluid displacement potential model enforces the irrotational condition of the acoustic fluid. This transformation reduces the number of degrees of freedom in two and three-dimensions and is suitable for both vibration and transient analyses.; The LLM method facilitates the construction of separate discretizations using different mesh generation programs, as well as use of customized time integration methods. To advance the solution in time, the LLM coupling method is combined with a partitioned solution procedure. The time-stepping computations are organized in a way that eliminates the traditional prediction step characteristic of staggered solution procedures. This is accomplished by solving for the interface variables: Lagrange multipliers and frame states, and then feeding this solution back to the coupled components. This sequence forestalls the well-known stability degradation caused by prediction, yet it retains the desirable localization features of a partitioned analysis procedure. One consequence of this method is that if two A-stable integration schemes, such as the trapezoidal rule, are chosen for the fluid and structure, then the coupled system retains unconditional stability. Other time integration schemes, such as central difference, for one or both components can be readily accommodated.
机译:本文提出了一种新的耦合方法,用于处理声流体与柔性结构的相互作用,重点在于处理空间不匹配的网格。它基于本地化拉格朗日乘数(LLM)方法。在相互作用表面处的流体和结构之间引入框架作为“介体”或“信息中继”设备。框架根据运动学变量离散化。拉格朗日乘数场在框架和结构之间引入,另一个在框架与流体之间引入。乘数对的功能是运动连续性的执行不力。这种配置完全将结构模型和流体模型解耦,因为每种模型都是通过节点并置的乘法器与框架进行通信,而不是彼此直接通信。为了确保适当的通讯,流体和结构模型的能量公式是根据位移和相关的时间导数来表示的。将流体驱替模型转换为流体驱替势模型的新颖方法增强了声学流体的非旋转条件。这种变换减少了二维和三维自由度的数量,适用于振动和瞬态分析。 LLM方法有助于使用不同的网格生成程序以及使用定制的时间积分方法来构造单独的离散化。为了及时解决问题,将LLM耦合方法与分区解决方案过程结合在一起。时间步进计算的组织方式消除了交错求解程序的传统预测步长特征。这是通过解决以下接口变量来完成的:拉格朗日乘数和框架状态,然后将此解决方案反馈给耦合的组件。该序列可防止由于预测而导致的众所周知的稳定性下降,但仍保留了分区分析过程的理想定位特征。该方法的结果是,如果为流体和结构选择两个A稳定积分方案(例如梯形法则),则耦合系统将保持无条件的稳定性。一个或两个组件的其他时间积分方案(例如中心差)可以很容易地适应。

著录项

  • 作者

    Ross, Mike R.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 204 p.
  • 总页数 204
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空、航天技术的研究与探索;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号