首页> 外文学位 >Optimizing yield data collection efforts for forest management planning.
【24h】

Optimizing yield data collection efforts for forest management planning.

机译:为森林管理规划优化产量数据收集工作。

获取原文
获取原文并翻译 | 示例

摘要

Forest yield estimates are an essential component of linear programming forest planning models since the volume of the forest and the classification of analysis areas or land base are usually derived using this type of data. Forest yield is normally acquired by a forest inventory or using growth and yield models that predict future yields. Since forest inventories and growth and yield models are often subject to multiple errors, when this information is used as input in the planning models the assumption of certainty for LP models is not accomplished. In this framework, a trade-off develops since underlying the acquisition of data is the belief that better data leads to better decisions and at the same time obtaining better data costs money. In regard to yield data from forest inventories and growth and yield models, and their utilization for forest planning, some research questions arise concerning the relationships between the yield information and the decisions that are adopted using uncertain yield data.; This work uses a harvest scheduling linear programming model to calculate optimal inventory and growth and yield modeling efforts. The harvest scheduling model maximizes the net present value of harvest plus the value of the forest remaining after the planning horizon. Special formulations of the harvest scheduling models are built (True or Augmented Real Model) using several formulations of other harvest scheduling models (Perturbed Models, where sub-samples of inventory plots and experimental plots were used to build a yield table and an age-site class distribution of forest areas), and a reference formulation (Real Model, where all of the available inventory and experimental plots information is used to build the yield table and the age-site distribution). This Augmented Real Models were used to calculate the value of the Loss variable that is considered to be a measure of monetary losses as a result of the use of imperfect yield information in prescribing optimal harvest policies. Loss was used to estimate the trade-offs between making better decisions---i.e., harvest policies---when better information is available and the cost of obtaining better information. The value of Loss and the costs of acquiring the yield data were used to fit and empirical relationship between the amount of information (number of inventory and experimental plots, and size of the inventory plot) used in the harvest scheduling models and the total costs, i.e., Cost+Loss, in order to derive optimal inventory sampling sizes, optimal inventory plot size and the optimal number of experimental plots. An example was developed with radiata pine information in southern Chile.; Results from the minimization of the Cost-plus-Loss functions indicate that when the expected monetary losses are considered, sampling sizes for the inventory are much larger than the current practices in Chile and the number of experimental plots is much smaller than the current system used in the example although the growth models were simpler than the current models used for radiata pine management in Chile. The results were inconclusive in regard to the size of the inventory plot.; The Cost-plus-Loss approach indicate that the number of inventory and experimental plots used for harvest planning purposes should be increased until the marginal value of the information provided by these plots equals the marginal cost of collecting the data. This is an alternative approach to the current statistics-oriented criteria for inventory planning. The analysis of the Loss function indicates that inventory information is more important for harvest scheduling purposes, than experimental plots information.; Finally, the potential distribution and value of the objective function of the harvest scheduling model is dependent on the yield information used to develop the yield table and the distribution of forest area in age-site classes. The results indicate that there are statistical signific
机译:森林产量估算是线性规划森林规划模型的重要组成部分,因为森林体积和分析区域或土地基础的分类通常是使用此类数据得出的。通常通过森林清查或使用预测未来产量的生长和产量模型来获取森林产量。由于森林资源清查,生长和产量模型经常遭受多重错误的影响,因此当将此信息用作规划模型的输入时,LP模型确定性的假设无法实现。在这种框架下,需要进行权衡,因为在数据获取基础上的信念是,更好的数据会导致更好的决策,同时获取更好的数据会花费金钱。关于森林资源,生长和产量模型的产量数据及其在森林规划中的利用,出现了一些有关产量信息与使用不确定性产量数据所采用的决策之间的关系的研究问题。这项工作使用收获调度线性规划模型来计算最佳库存和增长以及产量建模工作。采伐计划模型使采伐的净现值加上规划期之后剩余的森林价值最大化。使用其他收获调度模型(扰动模型)的几种公式构建收获调度模型的特殊公式(真实或增强实模型),其中使用库存图和实验图的子样本来构建产量表和年龄地点林区的分类分布)和参考公式(实模型,其中所有可用的清单和实验田地信息均用于构建产量表和年龄点分布)。该增强实模型用于计算损失变量的值,该损失变量被认为是金钱损失的一种度量,这是由于在制定最佳收获政策时使用了不完善的产量信息。损失用于估计在可获得更好的信息时(做出更好的决策)(即收获政策)与获得更好的信息的成本之间的权衡。损失的价值和获取产量数据的成本用于拟合收获计划模型中使用的信息量(库存和实验地的数量以及库存地的大小)与总成本之间的经验关系,即成本+损失,以便得出最佳库存抽样大小,最佳库存地块大小和最佳试验地块数量。在智利南部利用辐射松信息开发了一个例子。成本加损失函数最小化的结果表明,考虑到预期的货币损失,库存的抽样规模比智利的现行做法大得多,而试验地块的数量则远小于当前使用的系统在示例中,尽管增长模型比智利用于辐射松管理的当前模型更为简单。关于存货地块的大小,结果尚无定论。成本加损失法表明,应增加用于收获计划目的的库存和试验用地的数量,直到这些用地提供的信息的边际价值等于收集数据的边际成本为止。这是当前面向统计的库存计划标准的替代方法。损失函数的分析表明,清单信息对于收获计划的目的比实验地块信息更为重要。最后,采伐计划模型目标函数的潜在分布和价值取决于用于开发产量表的产量信息以及年龄点类别中森林面积的分布。结果表明,有统计学意义

著录项

  • 作者

    Gilabert, Horacio.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Agriculture Forestry and Wildlife.; Operations Research.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 172 p.
  • 总页数 172
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 森林生物学;运筹学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号